CSU-2173 Use FFT
Description
Bobo computes the product P(x)⋅Q(x)=(c_0 + c_1x + … + c_{n+m}x^{n + m}) for two polynomials P(x)=(a_0 + a_1x + … + a_nx^n) and Q(x)=(b_0 + b_1x + … + b_mx^m). Find $ (c_L + c_{L + 1} + … + c_R) $ modulo ($10^9 $ + 7) for given L and R.
- 1 ≤ n, m ≤ 5 × (10^5)
- 0 ≤ L ≤ R ≤ n + m
- 0 ≤ (a_i, b_i) ≤ (10^9)
- Both the sum of n and the sum of m do not exceed (10^6).
Input
The input consists of several test cases and is terminated by end-of-file.
The first line of each test case contains four integers n, m, L, R.
The second line contains (n + 1) integers (a_0, a_1, …, a_n).
The third line contains (m + 1) integers (b_0, b_1, …, b_m).
Output
For each test case, print an integer which denotes the reuslt.
Sample Input
1 1 0 2
1 2
3 4
1 1 1 2
1 2
3 4
2 3 0 5
1 2 999999999
1 2 3 1000000000
Sample Output
21
18
5
题解
这题标题是Use FFT所以当然是用FFT做了(滑稽)
这题其实是个数学题+找规律题,借用一张图片
所以我们对b求前缀和,用a去乘,注意细节就好了
#include<bits/stdc++.h>
#define maxn 500050
#define p 1000000007
using namespace std;
typedef long long ll;
ll a[maxn], b[maxn];
ll pre[maxn * 2];
int main() {
int n, m, l, r;
while (scanf("%d%d%d%d", &n, &m, &l, &r) != EOF) {
for (int i = 1; i <= n + 1; i++) {
scanf("%lld", &a[i]);
}
for (int i = 1; i <= m + 1; i++) {
scanf("%lld", &b[i]);
pre[i] = (pre[i - 1] + b[i]) % p;
}
for (int i = m + 2; i <= r + 1; i++) {
pre[i] = pre[i - 1];
}
ll ans = 0;
for (int i = 1; i <= n + 1; i++) {
ans = (ans + a[i] * (pre[r + 1] - pre[l] + p) % p) % p;
if (l > 0) l--;
if (r >= 0) r--;
}
printf("%lld
", (ans + p) % p);
}
return 0;
}