• 将tflearn的模型保存为pb,给TensorFlow使用


    参考:https://github.com/tflearn/tflearn/issues/964

    解决方法:

    """
    Tensorflow graph freezer
    Converts Tensorflow trained models in .pb
    
    Code adapted from:
    https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py
    """
    
    import os, argparse
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
    import tensorflow as tf
    from tensorflow.python.framework import graph_util
    
    def freeze_graph(model_folder,output_graph="frozen_model.pb"):
        # We retrieve our checkpoint fullpath
        try:
            checkpoint = tf.train.get_checkpoint_state(model_folder)
            input_checkpoint = checkpoint.model_checkpoint_path
            print("[INFO] input_checkpoint:", input_checkpoint)
        except:
            input_checkpoint = model_folder
            print("[INFO] Model folder", model_folder)
    
        # Before exporting our graph, we need to precise what is our output node
        # This is how TF decides what part of the Graph he has to keep and what part it can dump
        output_node_names = "FullyConnected/Softmax" # NOTE: Change here
    
        # We clear devices to allow TensorFlow to control on which device it will load operations
        clear_devices = True
        
        # We import the meta graph and retrieve a Saver
        saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
    
        # We retrieve the protobuf graph definition
        graph = tf.get_default_graph()
        input_graph_def = graph.as_graph_def()
    
        # We start a session and restore the graph weights
        with tf.Session() as sess:
            saver.restore(sess, input_checkpoint)
    
            # We use a built-in TF helper to export variables to constants
            output_graph_def = graph_util.convert_variables_to_constants(
                sess,                        # The session is used to retrieve the weights
                input_graph_def,             # The graph_def is used to retrieve the nodes 
                output_node_names.split(",") # The output node names are used to select the usefull nodes
            ) 
    
            # Finally we serialize and dump the output graph to the filesystem
            with tf.gfile.GFile(output_graph, "wb") as f:
                f.write(output_graph_def.SerializeToString())
            print("%d ops in the final graph." % len(output_graph_def.node))
    
            print("[INFO] output_graph:",output_graph)
            print("[INFO] all done")
    
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser(description="Tensorflow graph freezer
    Converts trained models to .pb file",
                                         prefix_chars='-')
        parser.add_argument("--mfolder", type=str, help="model folder to export")
        parser.add_argument("--ograph", type=str, help="output graph name", default="frozen_model.pb")
        
        args = parser.parse_args()
        print(args,"
    ")
    
        freeze_graph(args.mfolder,args.ograph)
    
    # However, before doing model.save(...) on TFLearn i have to do
    # ************************************************************
    # del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]
    # ************************************************************
    
    """
    Then I call this command
    python tf_freeze.py --mfolder=<path_to_tflearn_model>
    
    Note
    
        The <path_to_tflearn_model> must not have the ".data-00000-of-00001".
        The output_node_names variable may change depending on your architecture. The thing is that you must reference the layer that has the softmax activation function.
    """

    注意:

    1、需要在 tflearn的model.save 前:

    del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]

    作用:去除模型里训练OP。

    参考:https://github.com/tflearn/tflearn/issues/605#issuecomment-298478314

     2、如果是有batch normalzition,或者残差网络层,会出现:

    Error when loading the frozen graph with tensorflow.contrib.layers.python.layers.batch_norm
    ValueError: graph_def is invalid at node u'BatchNorm/cond/AssignMovingAvg/Switch': Input tensor 'BatchNorm/moving_mean:0' Cannot convert a tensor of type float32 to an input of type float32_ref
    freeze_graph.py doesn't seem to store moving_mean and moving_variance properly

    An ugly way to get it working:
    manually replace the wrong node definitions in the frozen graph
    RefSwitch --> Switch + add '/read' to the input names
    AssignSub --> Sub + remove use_locking attributes

    则需要在restore模型后加入:

    # fix batch norm nodes
    for node in gd.node:
      if node.op == 'RefSwitch':
        node.op = 'Switch'
        for index in xrange(len(node.input)):
          if 'moving_' in node.input[index]:
            node.input[index] = node.input[index] + '/read'
      elif node.op == 'AssignSub':
        node.op = 'Sub'
        if 'use_locking' in node.attr: del node.attr['use_locking']
    

     参考:https://github.com/tensorflow/tensorflow/issues/3628

    I met the same issue when I was trying to export graph and variables by saved_model module. And finally I found a walk around to fix this issue:

    Remove the TRAIN_OPS collections from graph collection. e.g.:

    with dnn.graph.as_default():
         del tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)[:]

    The dumped graph may not be available for training again (by tflearn), but should be able to perform prediction and evaluation. This is useful when serving model by another module or language (e.g. tensorflow serving or tensorflow go binding). I'll do more further tests about this.

    If you wanna re-train the model, please use the builtin "save" method and re-construction the graph and load the saved data when re-training.

    2、可能需要在代码修改这行,

    output_node_names = "FullyConnected/Softmax" # NOTE: Change here


    参考:https://gist.github.com/morgangiraud/249505f540a5e53a48b0c1a869d370bf#file-medium-tffreeze-1-py

    @vparikh10 @ratfury @rakashi I faced the same situation just like you.
    From what I understood, you may have to change this line according to your network definition.
    In my case, instead of having output_node_names = "Accuracy/prediction", I have output_node_names = "FullyConnected_2/Softmax".

    
    

    softmax

    
    

    I made this change after reading this suggestion


    对我自己而言,写成softmax或者Softmax都是不行的!然后我将所有的node names打印出来:
    打印方法:
        with tf.Session() as sess:
                model = get_cnn_model(max_len, volcab_size)
                model.fit(trainX, trainY, validation_set=(testX, testY), show_metric=True, batch_size=1000, n_epoch=1)
                init_op = tf.initialize_all_variables()
                sess.run(init_op)
    
                for v in sess.graph.get_operations():
                    print(v.name)
    
    

    然后确保output_node_names在里面。



    附:gist里的代码,将output node names转换为参数

    import os, argparse
    
    import tensorflow as tf
    
    # The original freeze_graph function
    # from tensorflow.python.tools.freeze_graph import freeze_graph 
    
    dir = os.path.dirname(os.path.realpath(__file__))
    
    def freeze_graph(model_dir, output_node_names):
        """Extract the sub graph defined by the output nodes and convert 
        all its variables into constant 
        Args:
            model_dir: the root folder containing the checkpoint state file
            output_node_names: a string, containing all the output node's names, 
                                comma separated
        """
        if not tf.gfile.Exists(model_dir):
            raise AssertionError(
                "Export directory doesn't exists. Please specify an export "
                "directory: %s" % model_dir)
    
        if not output_node_names:
            print("You need to supply the name of a node to --output_node_names.")
            return -1
    
        # We retrieve our checkpoint fullpath
        checkpoint = tf.train.get_checkpoint_state(model_dir)
        input_checkpoint = checkpoint.model_checkpoint_path
        
        # We precise the file fullname of our freezed graph
        absolute_model_dir = "/".join(input_checkpoint.split('/')[:-1])
        output_graph = absolute_model_dir + "/frozen_model.pb"
    
        # We clear devices to allow TensorFlow to control on which device it will load operations
        clear_devices = True
    
        # We start a session using a temporary fresh Graph
        with tf.Session(graph=tf.Graph()) as sess:
            # We import the meta graph in the current default Graph
            saver = tf.train.import_meta_graph(input_checkpoint + '.meta', clear_devices=clear_devices)
    
            # We restore the weights
            saver.restore(sess, input_checkpoint)
    
            # We use a built-in TF helper to export variables to constants
            output_graph_def = tf.graph_util.convert_variables_to_constants(
                sess, # The session is used to retrieve the weights
                tf.get_default_graph().as_graph_def(), # The graph_def is used to retrieve the nodes 
                output_node_names.split(",") # The output node names are used to select the usefull nodes
            ) 
    
            # Finally we serialize and dump the output graph to the filesystem
            with tf.gfile.GFile(output_graph, "wb") as f:
                f.write(output_graph_def.SerializeToString())
            print("%d ops in the final graph." % len(output_graph_def.node))
    
        return output_graph_def
    
    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument("--model_dir", type=str, default="", help="Model folder to export")
        parser.add_argument("--output_node_names", type=str, default="", help="The name of the output nodes, comma separated.")
        args = parser.parse_args()
    
    freeze_graph(args.model_dir, args.output_node_names)
    
    
    

  • 相关阅读:
    unity编辑器脚本工具练习
    虚拟现实之机械拆装项目架构
    unity两点之间抛物线,完美金手指
    unity发射弓箭轨迹的实现
    基于unity的直升机模拟设计
    windows使用小技巧
    硬盘分区表知识——详解硬盘MBR
    针对设备转发表的攻击
    kali2020创建root用户
    OllyDBG的基本快捷键及其功能
  • 原文地址:https://www.cnblogs.com/bonelee/p/8445261.html
Copyright © 2020-2023  润新知