• [转]KMP算法


    网上有两篇比较经典的关于KMP的讲述,

    http://www.ruanyifeng.com/blog/2013/05/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm.html

    http://www.cnblogs.com/yjiyjige/p/3263858.html

    1.当不匹配时,i表示t中当前查找位置,j表示p中当前查找位置。阮做法是把i向右偏移k1个位置,j重置为0,而孤影的做法是i保持不变,j向左偏移k2个位置。本质上是一样的,关键还是偏移值k的计算

    2.KMP算法的核心是,对于p中的每一个位置如果不匹配时,都会有一个对应的偏移量k。所以一般都会有一个和p长度对应的数组,存放每个位置的偏移量。

    3.孤影中j为什么偏移k个位置的原因讲解很赞,在计算k的过程中也有理有据,而阮的做法更偏向于结果导向性,只是说为什么要这么做,没有给出证明,但这种做饭倒是很容易理解容易掌握。

     

    两篇原文摘录如下:

    字符串匹配的KMP算法

     

    作者: 阮一峰

    日期: 2013年5月 1日

    字符串匹配是计算机的基本任务之一。

    举例来说,有一个字符串"BBC ABCDAB ABCDABCDABDE",我想知道,里面是否包含另一个字符串"ABCDABD"?

    许多算法可以完成这个任务,Knuth-Morris-Pratt算法(简称KMP)是最常用的之一。它以三个发明者命名,起头的那个K就是著名科学家Donald Knuth。

    这种算法不太容易理解,网上有很多解释,但读起来都很费劲。直到读到Jake Boxer的文章,我才真正理解这种算法。下面,我用自己的语言,试图写一篇比较好懂的KMP算法解释。

    1.

    首先,字符串"BBC ABCDAB ABCDABCDABDE"的第一个字符与搜索词"ABCDABD"的第一个字符,进行比较。因为B与A不匹配,所以搜索词后移一位。

    2.

    因为B与A不匹配,搜索词再往后移。

    3.

    就这样,直到字符串有一个字符,与搜索词的第一个字符相同为止。

    4.

    接着比较字符串和搜索词的下一个字符,还是相同。

    5.

    直到字符串有一个字符,与搜索词对应的字符不相同为止。

    6.

    这时,最自然的反应是,将搜索词整个后移一位,再从头逐个比较。这样做虽然可行,但是效率很差,因为你要把"搜索位置"移到已经比较过的位置,重比一遍。

    7.

    一个基本事实是,当空格与D不匹配时,你其实知道前面六个字符是"ABCDAB"。KMP算法的想法是,设法利用这个已知信息,不要把"搜索位置"移回已经比较过的位置,继续把它向后移,这样就提高了效率。

    8.

    怎么做到这一点呢?可以针对搜索词,算出一张《部分匹配表》(Partial Match Table)。这张表是如何产生的,后面再介绍,这里只要会用就可以了。

    9.

    已知空格与D不匹配时,前面六个字符"ABCDAB"是匹配的。查表可知,最后一个匹配字符B对应的"部分匹配值"为2,因此按照下面的公式算出向后移动的位数:

      移动位数 = 已匹配的字符数 - 对应的部分匹配值

    因为 6 - 2 等于4,所以将搜索词向后移动4位。

    10.

    因为空格与C不匹配,搜索词还要继续往后移。这时,已匹配的字符数为2("AB"),对应的"部分匹配值"为0。所以,移动位数 = 2 - 0,结果为 2,于是将搜索词向后移2位。

    11.

    因为空格与A不匹配,继续后移一位。

    12.

    逐位比较,直到发现C与D不匹配。于是,移动位数 = 6 - 2,继续将搜索词向后移动4位。

    13.

    逐位比较,直到搜索词的最后一位,发现完全匹配,于是搜索完成。如果还要继续搜索(即找出全部匹配),移动位数 = 7 - 0,再将搜索词向后移动7位,这里就不再重复了。

    14.

    下面介绍《部分匹配表》是如何产生的。

    首先,要了解两个概念:"前缀"和"后缀"。 "前缀"指除了最后一个字符以外,一个字符串的全部头部组合;"后缀"指除了第一个字符以外,一个字符串的全部尾部组合。

    15.

    "部分匹配值"就是"前缀"和"后缀"的最长的共有元素的长度。以"ABCDABD"为例,

      - "A"的前缀和后缀都为空集,共有元素的长度为0;

      - "AB"的前缀为[A],后缀为[B],共有元素的长度为0;

      - "ABC"的前缀为[A, AB],后缀为[BC, C],共有元素的长度0;

      - "ABCD"的前缀为[A, AB, ABC],后缀为[BCD, CD, D],共有元素的长度为0;

      - "ABCDA"的前缀为[A, AB, ABC, ABCD],后缀为[BCDA, CDA, DA, A],共有元素为"A",长度为1;

      - "ABCDAB"的前缀为[A, AB, ABC, ABCD, ABCDA],后缀为[BCDAB, CDAB, DAB, AB, B],共有元素为"AB",长度为2;

      - "ABCDABD"的前缀为[A, AB, ABC, ABCD, ABCDA, ABCDAB],后缀为[BCDABD, CDABD, DABD, ABD, BD, D],共有元素的长度为0。

    16.

    "部分匹配"的实质是,有时候,字符串头部和尾部会有重复。比如,"ABCDAB"之中有两个"AB",那么它的"部分匹配值"就是2("AB"的长度)。搜索词移动的时候,第一个"AB"向后移动4位(字符串长度-部分匹配值),就可以来到第二个"AB"的位置。

    (完)

    (原创)详解KMP算法

     

    KMP算法应该是每一本《数据结构》书都会讲的,算是知名度最高的算法之一了,但很可惜,我大二那年压根就没看懂过~~~

    之后也在很多地方也都经常看到讲解KMP算法的文章,看久了好像也知道是怎么一回事,但总感觉有些地方自己还是没有完全懂明白。这两天花了点时间总结一下,有点小体会,我希望可以通过我自己的语言来把这个算法的一些细节梳理清楚,也算是考验一下自己有真正理解这个算法。

    什么是KMP算法:

    KMP是三位大牛:D.E.Knuth、J.H.Morris和V.R.Pratt同时发现的。其中第一位就是《计算机程序设计艺术》的作者!!

    KMP算法要解决的问题就是在字符串(也叫主串)中的模式(pattern)定位问题。说简单点就是我们平时常说的关键字搜索。模式串就是关键字(接下来称它为P),如果它在一个主串(接下来称为T)中出现,就返回它的具体位置,否则返回-1(常用手段)。

     

    首先,对于这个问题有一个很单纯的想法:从左到右一个个匹配,如果这个过程中有某个字符不匹配,就跳回去,将模式串向右移动一位。这有什么难的?

    我们可以这样初始化:

     

    之后我们只需要比较i指针指向的字符和j指针指向的字符是否一致。如果一致就都向后移动,如果不一致,如下图:

     

    A和E不相等,那就把i指针移回第1位(假设下标从0开始),j移动到模式串的第0位,然后又重新开始这个步骤:

     

    基于这个想法我们可以得到以下的程序:

    复制代码
     1 /**
     2 
     3  * 暴力破解法
     4 
     5  * @param ts 主串
     6 
     7  * @param ps 模式串
     8 
     9  * @return 如果找到,返回在主串中第一个字符出现的下标,否则为-1
    10 
    11  */
    12 
    13 public static int bf(String ts, String ps) {
    14 
    15     char[] t = ts.toCharArray();
    16 
    17     char[] p = ps.toCharArray();
    18 
    19     int i = 0; // 主串的位置
    20 
    21     int j = 0; // 模式串的位置
    22 
    23     while (i < t.length && j < p.length) {
    24 
    25        if (t[i] == p[j]) { // 当两个字符相同,就比较下一个
    26 
    27            i++;
    28 
    29            j++;
    30 
    31        } else {
    32 
    33            i = i - j + 1; // 一旦不匹配,i后退
    34 
    35            j = 0; // j归0
    36 
    37        }
    38 
    39     }
    40 
    41     if (j == p.length) {
    42 
    43        return i - j;
    44 
    45     } else {
    46 
    47        return -1;
    48 
    49     }
    50 
    51 }
    复制代码

    上面的程序是没有问题的,但不够好!(想起我高中时候数字老师的一句话:我不能说你错,只能说你不对~~~)

    如果是人为来寻找的话,肯定不会再把i移动回第1位,因为主串匹配失败的位置前面除了第一个A之外再也没有A,我们为什么能知道主串前面只有一个A?因为我们已经知道前面三个字符都是匹配的!(这很重要)。移动过去肯定也是不匹配的!有一个想法,i可以不动,我们只需要移动j即可,如下图:

     

    上面的这种情况还是比较理想的情况,我们最多也就多比较了再次。但假如是在主串“SSSSSSSSSSSSSA”中查找“SSSSB”,比较到最后一个才知道不匹配,然后i回溯,这个的效率是显然是最低的。

    大牛们是无法忍受“暴力破解”这种低效的手段的,于是他们三个研究出了KMP算法。其思想就如同我们上边所看到的一样:“利用已经部分匹配这个有效信息,保持i指针不回溯,通过修改j指针,让模式串尽量地移动到有效的位置。”

    所以,整个KMP的重点就在于当某一个字符与主串不匹配时,我们应该知道j指针要移动到哪

    接下来我们自己来发现j的移动规律:

     

    如图:C和D不匹配了,我们要把j移动到哪?显然是第1位。为什么?因为前面有一个A相同啊:

     

    如下图也是一样的情况:

     

    可以把j指针移动到第2位,因为前面有两个字母是一样的:

     

    至此我们可以大概看出一点端倪,当匹配失败时,j要移动的下一个位置k。存在着这样的性质:最前面的k个字符和j之前的最后k个字符是一样的

    如果用数学公式来表示是这样的

    P[0 ~ k-1] == P[j-k ~ j-1]

    这个相当重要,如果觉得不好记的话,可以通过下图来理解:

     

    弄明白了这个就应该可能明白为什么可以直接将j移动到k位置了。

    因为:

    当T[i] != P[j]时

    有T[i-j ~ i-1] == P[0 ~ j-1]

    由P[0 ~ k-1] == P[j-k ~ j-1]

    必然:T[i-k ~ i-1] == P[0 ~ k-1]

    公式很无聊,能看明白就行了,不需要记住。

    这一段只是为了证明我们为什么可以直接将j移动到k而无须再比较前面的k个字符。

    好,接下来就是重点了,怎么求这个(这些)k呢?因为在P的每一个位置都可能发生不匹配,也就是说我们要计算每一个位置j对应的k,所以用一个数组next来保存,next[j] = k,表示当T[i] != P[j]时,j指针的下一个位置。

    很多教材或博文在这个地方都是讲得比较含糊或是根本就一笔带过,甚至就是贴一段代码上来,为什么是这样求?怎么可以这样求?根本就没有说清楚。而这里恰恰是整个算法最关键的地方。

    复制代码
     1 public static int[] getNext(String ps) {
     2 
     3     char[] p = ps.toCharArray();
     4 
     5     int[] next = new int[p.length];
     6 
     7     next[0] = -1;
     8 
     9     int j = 0;
    10 
    11     int k = -1;
    12 
    13     while (j < p.length - 1) {
    14 
    15        if (k == -1 || p[j] == p[k]) {
    16 
    17            next[++j] = ++k;
    18 
    19        } else {
    20 
    21            k = next[k];
    22 
    23        }
    24 
    25     }
    26 
    27     return next;
    28 
    29 }
    复制代码

    这个版本的求next数组的算法应该是流传最广泛的,代码是很简洁。可是真的很让人摸不到头脑,它这样计算的依据到底是什么?

    好,先把这个放一边,我们自己来推导思路,现在要始终记住一点,next[j]的值(也就是k)表示,当P[j] != T[i]时,j指针的下一步移动位置

    先来看第一个:当j为0时,如果这时候不匹配,怎么办?

     

    像上图这种情况,j已经在最左边了,不可能再移动了,这时候要应该是i指针后移。所以在代码中才会有next[0] = -1;这个初始化。

    如果是当j为1的时候呢?

     

    显然,j指针一定是后移到0位置的。因为它前面也就只有这一个位置了~~~

    下面这个是最重要的,请看如下图:

      

     

    请仔细对比这两个图。

    我们发现一个规律:

    当P[k] == P[j]时,

    有next[j+1] == next[j] + 1

    其实这个是可以证明的:

    因为在P[j]之前已经有P[0 ~ k-1] == p[j-k ~ j-1]。(next[j] == k)

    这时候现有P[k] == P[j],我们是不是可以得到P[0 ~ k-1] + P[k] == p[j-k ~ j-1] + P[j]。

    即:P[0 ~ k] == P[j-k ~ j],即next[j+1] == k + 1 == next[j] + 1。

    这里的公式不是很好懂,还是看图会容易理解些。

    那如果P[k] != P[j]呢?比如下图所示:

     

    像这种情况,如果你从代码上看应该是这一句:k = next[k];为什么是这样子?你看下面应该就明白了。

     

    现在你应该知道为什么要k = next[k]了吧!像上边的例子,我们已经不可能找到[ A,B,A,B ]这个最长的后缀串了,但我们还是可能找到[ A,B ]、[ B ]这样的前缀串的。所以这个过程像不像在定位[ A,B,A,C ]这个串,当C和主串不一样了(也就是k位置不一样了),那当然是把指针移动到next[k]啦。

    有了next数组之后就一切好办了,我们可以动手写KMP算法了:

    复制代码
     1 public static int KMP(String ts, String ps) {
     2 
     3     char[] t = ts.toCharArray();
     4 
     5     char[] p = ps.toCharArray();
     6 
     7     int i = 0; // 主串的位置
     8 
     9     int j = 0; // 模式串的位置
    10 
    11     int[] next = getNext(ps);
    12 
    13     while (i < t.length && j < p.length) {
    14 
    15        if (j == -1 || t[i] == p[j]) { // 当j为-1时,要移动的是i,当然j也要归0
    16 
    17            i++;
    18 
    19            j++;
    20 
    21        } else {
    22 
    23            // i不需要回溯了
    24 
    25            // i = i - j + 1;
    26 
    27            j = next[j]; // j回到指定位置
    28 
    29        }
    30 
    31     }
    32 
    33     if (j == p.length) {
    34 
    35        return i - j;
    36 
    37     } else {
    38 
    39        return -1;
    40 
    41     }
    42 
    43 }
    复制代码

    和暴力破解相比,就改动了4个地方。其中最主要的一点就是,i不需要回溯了。

    最后,来看一下上边的算法存在的缺陷。来看第一个例子:

     

    显然,当我们上边的算法得到的next数组应该是[ -1,0,0,1 ]

    所以下一步我们应该是把j移动到第1个元素咯:

     

    不难发现,这一步是完全没有意义的。因为后面的B已经不匹配了,那前面的B也一定是不匹配的,同样的情况其实还发生在第2个元素A上。

    显然,发生问题的原因在于P[j] == P[next[j]]

    所以我们也只需要添加一个判断条件即可:

    复制代码
    public static int[] getNext(String ps) {
    
        char[] p = ps.toCharArray();
    
        int[] next = new int[p.length];
    
        next[0] = -1;
    
        int j = 0;
    
        int k = -1;
    
        while (j < p.length - 1) {
    
           if (k == -1 || p[j] == p[k]) {
    
               if (p[++j] == p[++k]) { // 当两个字符相等时要跳过
    
                  next[j] = next[k];
    
               } else {
    
                  next[j] = k;
    
               }
    
           } else {
    
               k = next[k];
    
           }
    
        }
    
        return next;
    
    } 
    复制代码

    好了,至此。KMP算法也结束了。

    很奇怪,好像不是很难的东西怎么就把我困住这么久呢?

    仔细想想还是因为自己太浮躁了,以前总是草草应付,很多细节都没弄清楚,就以为自己懂了。结果就只能是似懂非懂的。要学东西真的需要静下心来。


     
  • 相关阅读:
    风险分解结构
    WBS 工作分解结构
    react函数式组件(非路由组件)实现路由跳转
    react使用antd组件递归实现左侧菜单导航树
    React4.0以上如何获取当前的路由地址呢
    浅谈react传入路由参数---withRouter组件
    react项目实现维持登录与自动登录
    async和await应用步骤分析+优化异常处理
    跨域场景&&跨域处理方案
    vscode react中标签自动补全 vscode jsx语法自动补全html标签
  • 原文地址:https://www.cnblogs.com/tianlanliao/p/3673791.html
Copyright © 2020-2023  润新知