• 洛谷2151 [SDOI2009]HH去散步(矩阵快速幂,边点互换)


    题意:HH有个一成不变的习惯,喜欢饭后百步走。所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离。 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回。 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法。现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径。

    输入格式:第一行:五个整数N,M,t,A,B。其中N表示学校里的路口的个数,M表示学校里的 路的条数,t表示HH想要散步的距离,A表示散步的出发点,而B则表示散步的终点。

    接下来M行,每行一组Ai,Bi,表示从路口Ai到路口Bi有一条路。数据保证Ai != Bi,但 不保证任意两个路口之间至多只有一条路相连接。 路口编号从0到N − 1。 同一行内所有数据均由一个空格隔开,行首行尾没有多余空格。没有多余空行。 答案模45989。 

    输出格式:一行,表示答案。

    分析:考虑如何将双向边变得有差异。把边看成点,正向x->y建一条有向边,反向y->x建一条有向边,如果边E1:x->y , 边E2:y->z 则E1向E2连一条边;这样如何处理走回来的情况呢??只要同一条边拆出来的两个点不相互连边即可;

    注意要构造一个虚拟点编号0,它连向点A,为单向边,该边编号为1。

    #include<cstdio>
    #include<cstring>
    #include<vector>
    using namespace std;
    const int mod = 45989;
    
    int n,m,t,a,b,x,y,goal,cnt = 1;
    int head[60],to[10000];
    vector<int> vt[60];
    
    struct Node{
        int a[200][200];
        Node operator *(const Node &x)const{
            Node ans;
            memset(ans.a,0,sizeof(a));
            for(int i = 1; i <= cnt; ++i)
                for(int t = 1; t <= cnt; ++t)
                    for(int k = 1; k <= cnt; ++k)
                        ans.a[i][t] = (ans.a[i][t]+a[i][k]*x.a[k][t]) % mod;
            return ans;
        }
    }base,ans;
    
    void quick_pow(int n){
        ans = base;
        while(n){
            if(n&1)  ans = ans*base;
            base = base*base;  n >>= 1;
        }
    }
    
    int main(){
        scanf("%d%d%d%d%d",&n,&m,&t,&a,&b);
        ++a, ++b;  to[1] = a;
        for(int i = 1; i <= m; ++i){
            scanf("%d%d",&x,&y);    
            ++x, ++y;
            //cnt表示当前边的编号,to数组是有向边的终点
            to[++cnt] = y, vt[x].push_back(cnt);
            to[++cnt] = x, vt[y].push_back(cnt);
        }
        for(int i = 1; i <= cnt; ++i){
            int u = to[i];
            for(auto &x : vt[u]){
                // 如果两条边是来自同一条边,跳过
                if(x == (i^1))  continue;
                base.a[i][x] = 1;
            }
        }
        quick_pow(t-1);
        for(int i = 1; i <= cnt; ++i)   
            if(to[i] == b)  goal = (goal+ans.a[1][i]) % mod;
        printf("%d",goal);
        return 0;
    }
    你只有十分努力,才能看上去毫不费力。
  • 相关阅读:
    POJ 3786 dp-递推 Adjacent Bit Counts *
    九度 1395 爱钱的胡老板 完全背包
    HDOJ 1085 Holding Bin-Laden Captive! (母函数)
    HDOJ 1028 Ignatius and the Princess III (母函数)
    HDOJ 1398 Square Coins 母函数
    生成函数(母函数)
    『转』 教你去视频网站的开始广告
    HDOJ 2082 找单词 (母函数)
    HDOJ 3177 Crixalis&#39;s Equipment
    Codeforces 322B
  • 原文地址:https://www.cnblogs.com/214txdy/p/14024246.html
Copyright © 2020-2023  润新知