• HDOJ 1028 Ignatius and the Princess III (母函数)


    Ignatius and the Princess III

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 9532    Accepted Submission(s): 6722


    Problem Description
    "Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

    "The second problem is, given an positive integer N, we define an equation like this:
      N=a[1]+a[2]+a[3]+...+a[m];
      a[i]>0,1<=m<=N;
    My question is how many different equations you can find for a given N.
    For example, assume N is 4, we can find:
      4 = 4;
      4 = 3 + 1;
      4 = 2 + 2;
      4 = 2 + 1 + 1;
      4 = 1 + 1 + 1 + 1;
    so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
     
    Input
    The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
     
    Output
    For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
     
    Sample Input
    4
    10
    20
     
    Sample Output
    5
    42
    627
     
    Author
    Ignatius.L
     
     
     1 #include <iostream>
     2 #include <cstdio>
     3 #include <cstring>
     4 
     5 using namespace std;
     6 
     7 const int maxn=200;
     8 
     9 int c1[maxn],c2[maxn];
    10 
    11 int main()
    12 {
    13     int n;
    14 while(scanf("%d",&n)!=EOF)
    15 {
    16     for(int i=0;i<=n;i++)
    17     {
    18         c1[i]=1; c2[i]=0;
    19     }
    20 
    21     for(int i=2;i<=n;i++)
    22     {
    23         for(int j=0;j<=n;j++)
    24         {
    25             for(int k=0;j+k<=n;k+=i)
    26                 c2[k+j]+=c1[j];
    27         }
    28 
    29         for(int j=0;j<=n;j++)
    30         {
    31             c1[j]=c2[j];  c2[j]=0;
    32         }
    33     }
    34     printf("%d
    ",c1[n]);
    35 }
    36 
    37     return 0;
    38 }
  • 相关阅读:
    jvm调优
    Spring 事务
    Spring Framework入门介绍
    redis入门介绍
    Spring与SpringMVC重复扫描问题
    跨域相关问题
    Spring MVC介绍
    Servlet、Servlet容器
    获取屏幕宽高
    mybatis中比较符的写法
  • 原文地址:https://www.cnblogs.com/CKboss/p/3165204.html
Copyright © 2020-2023  润新知