• 【AGC 005F】Many Easy Problems


    Description

    One day, Takahashi was given the following problem from Aoki:

    You are given a tree with N vertices and an integer K. The vertices are numbered 1 through N. The edges are represented by pairs of integers (ai,bi).

    For a set S of vertices in the tree, let f(S) be the minimum number of the vertices in a subtree of the given tree that contains all vertices in S.

    There are C(n,k) ways to choose K vertices from the trees. For each of them, let S be the set of the chosen vertices, and find the sum of f(S) over all C(n,k) ways.

    Since the answer may be extremely large, print it modulo 924844033(prime).

    Since it was too easy for him, he decided to solve this problem for all K=1,2...N.

    2≤N≤200000,1≤ai,bi≤N.The given graph is a tree.

    Input

    The input is given from Standard Input in the following format:
    N
    a1 b1
    a2 b2
    ...
    aN-1 bN-1

    Output

    Print N lines. The i-th line should contain the answer to the problem where K=i, modulo 924844033.
     

    题意:给定一棵 $n$ 个节点的树,选出 $k$ 个特殊点,假设点集为 $S$,令 $f(S)$ 为最小的包含这 $k$ 个节点的连通块,分别求出 $k=1...n$ 在所有情况下的 $f(S)$ 的和。

    分析:

    考虑暴力,一个点被统计在连通块内,即在以它为根时,选出来的 $k$ 个点都在它的同一个儿子的子树内。即节点 $x$ 被统计进答案的次数 $g(x)$ 为:

    $$g(x)=inom{n}{k}-sum _{(x,i)subseteq E}inom{sz_{i}}{k}$$

    令 $cnt_{x}$ 表示上述公式里有多少个 $sz_{i}=x$,那么可以得到:

    $$ans_{k}=sum _{i=1}^{n}cnt_{i}cdotinom{i}{k}$$

    整理可得:

    $$k!cdot ans_{k}=sum _{i=1}^{n}frac{cnt_{i}cdot i!}{(i-k)!}$$

    令 $a_{i}=cnt_{i}cdot i!$$b_{i}=(n-i)!$,则可得:

    $$k!cdot ans_{k}=sum _{i=1}^{n}a_{i}cdot b_{n-i+k}$$

    最终答案为 $ncdot inom{n}{k}-ans_{k}$ 

     

     1 #include<cstdio>
     2 #include<algorithm> 
     3 #include<cstring>
     4 #define LL long long
     5 using namespace std;
     6 const int N=2e5+5;
     7 const int M=524288+5;
     8 const int mod=924844033; 
     9 int n,nn,cnt,u,v,ans,first[N],fac[N],inv[N];
    10 int num[N],sz[N],a[M],b[M];
    11 struct edge{int to,next;}e[N*2];
    12 int read()
    13 {
    14     int x=0,f=1;char c=getchar();
    15     while(c<'0'||c>'9'){if(c=='-')f=-1;c=getchar();}
    16     while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    17     return x*f;
    18 }
    19 void ins(int u,int v){e[++cnt]=(edge){v,first[u]};first[u]=cnt;}
    20 void dfs(int x,int fa)
    21 {
    22     sz[x]=1;
    23     for(int i=first[x];i;i=e[i].next)
    24     {
    25         int to=e[i].to;
    26         if(to==fa)continue;
    27         dfs(to,x);
    28         sz[x]+=sz[to];
    29     }
    30     if(fa!=-1)a[sz[x]]++,a[n-sz[x]]++;
    31 }
    32 int power(int a,int b)
    33 {
    34     int ans=1;
    35     while(b)
    36     {
    37         if(b&1)ans=1ll*ans*a%mod;
    38         a=1ll*a*a%mod;b>>=1;
    39     }
    40     return ans;
    41 }
    42 void ntt(int *a,int n,int f)
    43 {
    44     int k=0;while((1<<k)<n)k++;
    45     for(int i=0;i<n;i++)
    46     {
    47         int t=0;
    48         for(int j=0;j<k;j++)
    49             if(i&(1<<j))t|=(1<<(k-j-1));
    50         if(i<t)swap(a[i],a[t]);
    51     }
    52     for(int l=2;l<=n;l<<=1)
    53     {
    54         int m=l>>1,nw=power(5,(mod-1)/l);
    55         if(f==-1)nw=power(nw,mod-2);
    56         for(int *p=a;p!=a+n;p+=l)
    57         {
    58             int w=1;
    59             for(int i=0;i<m;i++)
    60             {
    61                 int t=1ll*p[m+i]*w%mod;
    62                 p[m+i]=(p[i]-t+mod)%mod;
    63                 p[i]=(p[i]+t)%mod;
    64                 w=1ll*w*nw%mod;
    65             }
    66         }
    67     }
    68     if(f==-1)
    69     {
    70         int inv=power(n,mod-2);
    71         for(int i=0;i<n;i++)a[i]=1ll*a[i]*inv%mod;
    72     }
    73 }
    74 int main()
    75 {
    76     n=read();
    77     for(int i=1;i<n;i++)
    78     {
    79         u=read();v=read();
    80         ins(u,v);ins(v,u);
    81     }
    82     dfs(1,-1);
    83     fac[0]=1;
    84     for(int i=1;i<=n;i++)fac[i]=1ll*fac[i-1]*i%mod;
    85     inv[n]=power(fac[n],mod-2);
    86     for(int i=n;i>=1;i--)inv[i-1]=1ll*inv[i]*i%mod;
    87     for(int i=1;i<=n;i++)a[i]=1ll*a[i]*fac[i]%mod;
    88     for(int i=0;i<=n;i++)b[n-i]=inv[i];
    89     nn=1;while(nn<n+n+1)nn<<=1;
    90     ntt(a,nn,1);ntt(b,nn,1);
    91     for(int i=0;i<nn;i++)a[i]=1ll*a[i]*b[i]%mod;
    92     ntt(a,nn,-1);
    93     for(int i=1;i<=n;i++)
    94     {
    95         ans=1ll*fac[n]*inv[i]%mod*inv[n-i]%mod*n%mod;
    96         printf("%lld
    ",(ans-1ll*a[n+i]*inv[i]%mod+mod)%mod);
    97     }
    98     return 0;
    99 }
    View Code
  • 相关阅读:
    每日一题
    每日一题
    mysql 约束
    七种基础排序算法代码总汇
    netty之bytebuf粘包、分包
    Java nio 简易练手版 模拟用户群聊
    Java网络编程之终端聊天菜鸟版
    双重检测优化与加锁操作redis
    centos部署smb服务
    从事 iOS 研发6年的面经——送给准备跳槽的你!
  • 原文地址:https://www.cnblogs.com/zsnuo/p/8898265.html
Copyright © 2020-2023  润新知