• PAT-1132 Cut Integer (整数分割)


    Cutting an integer means to cut a K digits long integer Z into two integers of (K/2) digits long integers A and B. For example, after cutting Z = 167334, we have A = 167 and B = 334. It is interesting to see that Z can be devided by the product of A and B, as 167334 / (167 x 334) = 3. Given an integer Z, you are supposed to test if it is such an integer.

    Input Specification:
    Each input file contains one test case. For each case, the first line gives a positive integer N (<= 20). Then N lines follow, each gives an integer Z (10<=Z<=231). It is guaranteed that the number of digits of Z is an even number.

    Output Specification:
    For each case, print a single line "Yes" if it is such a number, or "No" if not.

    Sample Input:
    3
    167334

    2333

    12345678


    Sample Output:
    Yes

    No

    No



    题目大意:将一个k位(k为偶数)的整数拆成两半(即前k/2位 和 后k/2位),要求判断原数是否能整除于这两个数的积。


    主要思路:很简单的题目,只需要写一个计算整数位数的函数,将整数不断除以10,直到该数变为0即可累积得到该数的位数k。将该数除以10^(k/2)可得到前半部分,而求余则可以得到后半部分,最后用原数对两部分的积求模即可完成判断。需要注意的是,如果两部分的乘积为0则会使除数为0,出现浮点错误,也就是说在取模之前需要判断后半部分数是否为0,如果为0则直接输出No。

    #include <iostream>
    #include <cmath>
    using namespace std;
    
    //计算整数的位数
    int count_bit(int x) {
        int count = 0;
        while (x > 0) {
            x /= 10;
            count++;
        }
        return count;
    }
    
    int main(void) {
        int n, z, i;
        
        cin >> n;
        for (i = 0; i < n; i++) {
            cin >> z;
            int mid = count_bit(z) / 2;
            int t = pow(10, mid);
    		// z % t == 0 会产生浮点错误,比如当 z = 1000 时
            if (z % t > 0 && z % ((z % t) * (z / t)) == 0)		
                cout << "Yes" << endl;
    		else
    			cout << "No" << endl;
        }  
        
        return 0;
    }

  • 相关阅读:
    精华网站链接
    面向对象的CSS注意事项
    java 汉字按照指定字符集转换为二进制编码 并把二进制编码转换为对应的汉字 方法
    91环境
    windows下git代码提交情况统计
    git分支管理的使用案例及深入分析
    我在软件园二期的小花园捡起了一片树叶
    sslvpn连接:
    jetbrains register ways
    angular directive实现触底加载效果一则
  • 原文地址:https://www.cnblogs.com/zhayujie/p/12941582.html
Copyright © 2020-2023  润新知