Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<= 20). Then N lines follow, each gives an integer Z (10<=Z<=231). It is guaranteed that the number of digits of Z is an even number.
Output Specification:
For each case, print a single line "Yes" if it is such a number, or "No" if not.
Sample Input:
3
167334
2333
12345678
Yes
No
No
题目大意:将一个k位(k为偶数)的整数拆成两半(即前k/2位 和 后k/2位),要求判断原数是否能整除于这两个数的积。
主要思路:很简单的题目,只需要写一个计算整数位数的函数,将整数不断除以10,直到该数变为0即可累积得到该数的位数k。将该数除以10^(k/2)可得到前半部分,而求余则可以得到后半部分,最后用原数对两部分的积求模即可完成判断。需要注意的是,如果两部分的乘积为0则会使除数为0,出现浮点错误,也就是说在取模之前需要判断后半部分数是否为0,如果为0则直接输出No。
#include <iostream>
#include <cmath>
using namespace std;
//计算整数的位数
int count_bit(int x) {
int count = 0;
while (x > 0) {
x /= 10;
count++;
}
return count;
}
int main(void) {
int n, z, i;
cin >> n;
for (i = 0; i < n; i++) {
cin >> z;
int mid = count_bit(z) / 2;
int t = pow(10, mid);
// z % t == 0 会产生浮点错误,比如当 z = 1000 时
if (z % t > 0 && z % ((z % t) * (z / t)) == 0)
cout << "Yes" << endl;
else
cout << "No" << endl;
}
return 0;
}