• 1150 Travelling Salesman Problem (25分)


    The "travelling salesman problem" asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city and returns to the origin city?" It is an NP-hard problem in combinatorial optimization, important in operations research and theoretical computer science. (Quoted from "https://en.wikipedia.org/wiki/Travelling_salesman_problem".)

    In this problem, you are supposed to find, from a given list of cycles, the one that is the closest to the solution of a travelling salesman problem.

    Input Specification:

    Each input file contains one test case. For each case, the first line contains 2 positive integers N (2), the number of cities, and M, the number of edges in an undirected graph. Then M lines follow, each describes an edge in the format City1 City2 Dist, where the cities are numbered from 1 to N and the distance Dist is positive and is no more than 100. The next line gives a positive integer K which is the number of paths, followed by K lines of paths, each in the format:

    C1​​ C2​​ ... Cn​​

    where n is the number of cities in the list, and Ci​​'s are the cities on a path.

    Output Specification:

    For each path, print in a line Path X: TotalDist (Description) where X is the index (starting from 1) of that path, TotalDist its total distance (if this distance does not exist, output NA instead), and Description is one of the following:

    • TS simple cycle if it is a simple cycle that visits every city;
    • TS cycle if it is a cycle that visits every city, but not a simple cycle;
    • Not a TS cycle if it is NOT a cycle that visits every city.

    Finally print in a line Shortest Dist(X) = TotalDist where X is the index of the cycle that is the closest to the solution of a travelling salesman problem, and TotalDist is its total distance. It is guaranteed that such a solution is unique.

    Sample Input:

    6 10
    6 2 1
    3 4 1
    1 5 1
    2 5 1
    3 1 8
    4 1 6
    1 6 1
    6 3 1
    1 2 1
    4 5 1
    7
    7 5 1 4 3 6 2 5
    7 6 1 3 4 5 2 6
    6 5 1 4 3 6 2
    9 6 2 1 6 3 4 5 2 6
    4 1 2 5 1
    7 6 1 2 5 4 3 1
    7 6 3 2 5 4 1 6
    
     

    Sample Output:

    Path 1: 11 (TS simple cycle)
    Path 2: 13 (TS simple cycle)
    Path 3: 10 (Not a TS cycle)
    Path 4: 8 (TS cycle)
    Path 5: 3 (Not a TS cycle)
    Path 6: 13 (Not a TS cycle)
    Path 7: NA (Not a TS cycle)
    Shortest Dist(4) = 8

    旅行商问题:已知一个旅行商,想去各个城市卖东西,如果每个城市都走了一遍(并且是个环路),则是TS cycle,如果没有重复走过城市,则是TS simple cycle,我们还要找到最短的路径

    那么,我们的思路是,判定每个图是否都走过一遍,以及判定是否有重复走过,以及这个是否是环

    #include <iostream>
    #include <vector>
    #include <set>
    using namespace std;
    int N, M, path[300][300] = {0}, a, b, c, K, n;
    int short_K = -1, short_V = 999999;
    int main() {
        cin >> N >> M;
        while(M--) {
            cin >> a >> b >> c;
            path[a][b] = path[b][a] = c;
        }
        cin >> K;
        for(int c = 1; c <= K; c++) {
            int price = 0, NA = false;
            cin >> n;
            vector<int> v(n);
            set<int> s;
            for(int i = 0; i < n; i++) {
                cin >> v[i];
                s.insert(v[i]);
                if(i != 0) {
                    if(path[v[i - 1]][v[i]] != 0) price += path[v[i - 1]][v[i]];
                    else NA = true;
                }
            }
            if(NA) printf("Path %d: NA (Not a TS cycle)
    ", c);
            else {
                if(s.size() == N && v[0] == v[n - 1]) {
                    if(n - 1 == N) printf("Path %d: %d (TS simple cycle)
    ", c, price);
                    else printf("Path %d: %d (TS cycle)
    ", c, price);
                    if(price < short_V) {
                        short_V = price;
                        short_K = c;
                    }
                } else printf("Path %d: %d (Not a TS cycle)
    ", c, price);
            }
        }
        printf("Shortest Dist(%d) = %d
    ", short_K, short_V);
        return 0;
    }
  • 相关阅读:
    基本数据类型
    概率—基础基本概念
    3.21上午
    3.10下午
    贪心算法回顾
    学习wait、notify和synchronized及Lock
    使用Files更优雅的对文件操作
    Linux下常用命令整理
    Unix下日志操作、访问GET请求
    操作Unix下docker中的redis
  • 原文地址:https://www.cnblogs.com/littlepage/p/12817953.html
Copyright © 2020-2023  润新知