• HDU 5895 Mathematician QSC


    矩阵快速幂,欧拉函数

    Hint: (g(n)=frac{f(n)f(n+1)}{2})

    #include<bits/stdc++.h>
    using namespace std;
    #define rep(i,a,b) for(int i=a;i<=b;++i)
    #define ms(arr,a) memset(arr,a,sizeof arr)
    #define debug(x) cout<<"< "#x" = "<<x<<" >"<<endl
    
    long long n,y,x,s;
    long long F;
    
    struct matrix
    {
        long long a,b,c,d;
        matrix(){}
        matrix(long long m,long long n,long long p,long long q):a(m),b(n),c(p),d(q){}
        matrix(long long x):a(x),b(0),c(0),d(x){}
    };
    matrix solve(matrix A,matrix B)
    {
        matrix ret;
        ret.a=(A.a*B.a+A.b*B.c)%F;
        ret.b=(A.a*B.b+A.b*B.d)%F;
        ret.c=(A.c*B.a+A.d*B.c)%F;
        ret.d=(A.c*B.b+A.d*B.d)%F;
        return ret;
    }
    long long solve(long long x,long long y)
    {
        return x*y%(s+1);
    }
    template<typename T>
    T quick_pow(T a,long long n)
    {
        T ret(1);
        while(n)
        {
            if(n&1)ret=solve(ret,a);
            a=solve(a,a);
            n>>=1;
        }
        return ret;
    }
    long long phi(long long n)
    {
        long long ret=n;
        for(long long i=2;i<(long long)sqrt(n)+1;++i)
        {
            if(n%i==0)ret=ret/i*(i-1);
            while(n%i==0)n/=i;
        }
        if(n>1)ret=ret/n*(n-1);
        return ret;
    }
    int main()
    {
        int T;scanf("%d",&T);
        while(T--)
        {
            scanf("%lld%lld%lld%lld",&n,&y,&x,&s);
            F=2*phi(s+1);
            long long N=n*y;
            matrix M(2,1,1,0);
            M=quick_pow(M,N);
            printf("%lld
    ",quick_pow(x,M.a*M.c%F/2));
        }
    }
    
  • 相关阅读:
    移动端meta标签
    document.ready 和 window.onload
    axios 源码分析
    vue 中的 el
    安卓和Ios 手机兼容性
    一些移动端问题
    Python 局部变量与全局变量
    Linux常用命令大全(非常全!!!)
    Python_爬虫_基础
    linux 常用命令
  • 原文地址:https://www.cnblogs.com/maoruimas/p/9551447.html
Copyright © 2020-2023  润新知