• SSD-tensorflow-1 demo


    一、简易识别

    用最简单的已训练好的模型对20类目标做检测。

    你电脑的tensorflow + CUDA + CUDNN环境都是OK的, 同时python需要安装cv2库

    {      'aeroplane'    'bicycle'    'bird'     'boat'    'bottle'    'bus'    'car'    'cat'    'chair'    'cow'    'diningtable'    'dog'    'horse'    'motorbike'    'person'    'pottedplant'    'sheep'    'sofa'    'train'    'tvmonitor' }

    代码地址 

    下载好代码后,在checkpoints文件夹下面由ssd_300_vgg.ckpt,直接解压到当前文件夹。

    找到notebooks文件夹里的ssd_notebook.ipynb,用jupyter打开。

    将读入的图片改为自己的图片就行了(更改path或者将自己的图片放到demo文件夹下面),然后运行所有cells。

    • path为你想要进行测试的图片目录(代码中只对该目录下的最后一个文件夹进行测试,如果要想测试多幅图片或者做成视频的方式,需大家自行修改代码)

     二、demo2

    notebooks文件夹下,建立demo_test.py文件,在demo_test.py文件内写入如下代码后,直接运行demo_test.py(以下代码也是notebooks文件夹ssd_tests.ipynb内的代码,可以用notebook读取;我只是做了一些小改动)

    # -*- coding:utf-8 -*-
    # -*- author:zzZ_CMing  CSDN address:https://blog.csdn.net/zzZ_CMing
    # -*- 2018/07/14; 15:19
    # -*- python3.5
    """
    address: https://blog.csdn.net/qq_35608277/article/details/78660469
    本文代码来自于github中微软官方仓库
    """
    import os
    import cv2
    import math
    import random
    import tensorflow as tf
    import matplotlib.pyplot as plt
    import matplotlib.cm as mpcm
    import matplotlib.image as mpimg
    from notebooks import visualization
    from nets import ssd_vgg_300, ssd_common, np_methods
    from preprocessing import ssd_vgg_preprocessing
    import sys
    
    # 当引用模块和运行的脚本不在同一个目录下,需在脚本开头添加如下代码:
    sys.path.append('./SSD-Tensorflow/')
    
    slim = tf.contrib.slim
    
    # TensorFlow session
    gpu_options = tf.GPUOptions(allow_growth=True)
    config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
    isess = tf.InteractiveSession(config=config)
    
    l_VOC_CLASS = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
                   'bus', 'car', 'cat', 'chair', 'cow',
                   'diningTable', 'dog', 'horse', 'motorbike', 'person',
                   'pottedPlant', 'sheep', 'sofa', 'train', 'TV']
    
    # 定义数据格式,设置占位符
    net_shape = (300, 300)
    # 预处理,以Tensorflow backend, 将输入图片大小改成 300x300,作为下一步输入
    img_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
    # 输入图像的通道排列形式,'NHWC'表示 [batch_size,height,width,channel]
    data_format = 'NHWC'
    
    # 数据预处理,将img_input输入的图像resize为300大小,labels_pre,bboxes_pre,bbox_img待解析
    image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
        img_input, None, None, net_shape, data_format,
        resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE)
    # 拓展为4维变量用于输入
    image_4d = tf.expand_dims(image_pre, 0)
    
    # 定义SSD模型
    # 是否复用,目前我们没有在训练所以为None
    reuse = True if 'ssd_net' in locals() else None
    # 调出基于VGG神经网络的SSD模型对象,注意这是一个自定义类对象
    ssd_net = ssd_vgg_300.SSDNet()
    # 得到预测类和预测坐标的Tensor对象,这两个就是神经网络模型的计算流程
    with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)):
        predictions, localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse)
    
    # 导入官方给出的 SSD 模型参数
    ckpt_filename = '../checkpoints/ssd_300_vgg.ckpt'
    # ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt'
    isess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(isess, ckpt_filename)
    
    # 在网络模型结构中,提取搜索网格的位置
    # 根据模型超参数,得到每个特征层(这里用了6个特征层,分别是4,7,8,9,10,11)的anchors_boxes
    ssd_anchors = ssd_net.anchors(net_shape)
    """
    每层的anchors_boxes包含4个arrayList,前两个List分别是该特征层下x,y坐标轴对于原图(300x300)大小的映射
    第三,四个List为anchor_box的长度和宽度,同样是经过归一化映射的,根据每个特征层box数量的不同,这两个List元素
    个数会变化。其中,长宽的值根据超参数anchor_sizes和anchor_ratios制定。
    """
    
    
    # 加载辅助作图函数
    def colors_subselect(colors, num_classes=21):
        dt = len(colors) // num_classes
        sub_colors = []
        for i in range(num_classes):
            color = colors[i * dt]
            if isinstance(color[0], float):
                sub_colors.append([int(c * 255) for c in color])
            else:
                sub_colors.append([c for c in color])
        return sub_colors
    
    
    def bboxes_draw_on_img(img, classes, scores, bboxes, colors, thickness=2):
        shape = img.shape
        for i in range(bboxes.shape[0]):
            bbox = bboxes[i]
            color = colors[classes[i]]
            # Draw bounding box...
            p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
            p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
            cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
            # Draw text...
            s = '%s/%.3f' % (l_VOC_CLASS[int(classes[i]) - 1], scores[i])
            p1 = (p1[0] - 5, p1[1])
            # cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 1.5, color, 3)
    
    
    colors_plasma = colors_subselect(mpcm.plasma.colors, num_classes=21)
    
    
    # 主流程函数
    def process_image(img, case, select_threshold=0.15, nms_threshold=.1, net_shape=(300, 300)):
        # select_threshold:box阈值——每个像素的box分类预测数据的得分会与box阈值比较,高于一个box阈值则认为这个box成功框到了一个对象
        # nms_threshold:重合度阈值——同一对象的两个框的重合度高于该阈值,则运行下面去重函数
    
        # 执行SSD模型,得到4维输入变量,分类预测,坐标预测,rbbox_img参数为最大检测范围,本文固定为[0,0,1,1]即全图
        rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions,
                                                                   localisations, bbox_img], feed_dict={img_input: img})
    
        # ssd_bboxes_select()函数根据每个特征层的分类预测分数,归一化后的映射坐标,
        # ancohor_box的大小,通过设定一个阈值计算得到每个特征层检测到的对象以及其分类和坐标
        rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select(rpredictions, rlocalisations, ssd_anchors,
                                                                  select_threshold=select_threshold,
                                                                  img_shape=net_shape,
                                                                  num_classes=21, decode=True)
    
        """
        这个函数做的事情比较多,这里说的细致一些:
        首先是输入,输入的数据为每个特征层(一共6个,见上文)的:
                                                    rpredictions: 分类预测数据,
                                                    rlocalisations: 坐标预测数据,
                                                    ssd_anchors: anchors_box数据
                                                其中:
                                                   分类预测数据为当前特征层中每个像素的每个box的分类预测
                                                   坐标预测数据为当前特征层中每个像素的每个box的坐标预测
                                                   anchors_box数据为当前特征层中每个像素的每个box的修正数据
    
            函数根据坐标预测数据和anchors_box数据,计算得到每个像素的每个box的中心和长宽,这个中心坐标和长宽会根据一个算法进行些许的修正,
        从而得到一个更加准确的box坐标;修正的算法会在后文中详细解释,如果只是为了理解算法流程也可以不必深究这个,因为这个修正算法属于经验算
        法,并没有太多逻辑可循。
            修正完box和中心后,函数会计算每个像素的每个box的分类预测数据的得分,当这个分数高于一个阈值(这里是0.5)则认为这个box成功
        框到了一个对象,然后将这个box的坐标数据,所属分类和分类得分导出,从而得到:
            rclasses:所属分类
            rscores:分类得分
            rbboxes:坐标
    
            最后要注意的是,同一个目标可能会在不同的特征层都被检测到,并且他们的box坐标会有些许不同,这里并没有去掉重复的目标,而是在下文
        中专门用了一个函数来去重
        """
    
        # 检测有没有超出检测边缘
        rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes)
        rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400)
        # 去重,将重复检测到的目标去掉
        rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold=nms_threshold)
        # 将box的坐标重新映射到原图上(上文所有的坐标都进行了归一化,所以要逆操作一次)
        rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes)
    
        if case == 1:
            bboxes_draw_on_img(img, rclasses, rscores, rbboxes, colors_plasma, thickness=8)
            return img
        else:
            return rclasses, rscores, rbboxes
    
    
    """
    # 只做目标定位,不做预测分析
    case = 1
    img = cv2.imread("../demo/person.jpg")
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    plt.imshow(process_image(img, case))
    plt.show()
    """
    # 做目标定位,同时做预测分析
    case = 2
    path = '../demo/person.jpg'
    # 读取图片
    img = mpimg.imread(path)
    # 执行主流程函数
    rclasses, rscores, rbboxes = process_image(img, case)
    # visualization.bboxes_draw_on_img(img, rclasses, rscores, rbboxes, visualization.colors_plasma)
    # 显示分类结果图
    visualization.plt_bboxes(img, rclasses, rscores, rbboxes), rscores, rbboxes

    会得到如下图示,如图已经成功的把物体标注出来,每个标记框中前一个数是标签项,后一个是预测的准确率;

    # 标签项与其对应的标签内容
    dict = {1:'aeroplane', 2:'bicycle', 3:'bird', 4:'boat', 5:'bottle',
    6:'bus', 7:'car', 8:'cat', 9:'chair', 10:'cow',
    11:'diningTable', 12:'dog', 13:'horse', 14:'motorbike', 15:'person',
    16:'pottedPlant', 17:'sheep', 18:'sofa', 19:'train', 20:'TV'}

    三、demo3 视频定位检测

    以上demo文件夹内都只是图片,如果你想在视频中标记物体——首先你需要拍一段视频,建议不要太长不然你要跑很久,然后需要在主目录下建立Video文件夹,在其下建立inputoutput文件夹,如下图所示:

    再将拍摄的视频存入input文件夹下,注意视频的名称哦!最后在主目录下建立demo_Video.py文件,存入如下代码,运行demo_Video.py

    请注意:166行的文件名要与文件夹视频名一致
    请注意:166行的文件名要与文件夹视频名一致

      1 # -*- coding:utf-8 -*-
      2 # -*- author:zzZ_CMing  CSDN address:https://blog.csdn.net/zzZ_CMing
      3 # -*- 2018/07/09; 15:19
      4 # -*- python3.5
      5 import os
      6 import cv2
      7 import math
      8 import random
      9 import tensorflow as tf
     10 import matplotlib.pyplot as plt
     11 import matplotlib.cm as mpcm
     12 import matplotlib.image as mpimg
     13 from notebooks import visualization
     14 from nets import ssd_vgg_300, ssd_common, np_methods
     15 from preprocessing import ssd_vgg_preprocessing
     16 import sys
     17 
     18 # 当引用模块和运行的脚本不在同一个目录下,需在脚本开头添加如下代码:
     19 sys.path.append('./SSD-Tensorflow/')
     20 
     21 slim = tf.contrib.slim
     22 
     23 # TensorFlow session
     24 gpu_options = tf.GPUOptions(allow_growth=True)
     25 config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
     26 isess = tf.InteractiveSession(config=config)
     27 
     28 l_VOC_CLASS = ['aeroplane', 'bicycle', 'bird', 'boat', 'bottle',
     29                'bus', 'car', 'cat', 'chair', 'cow',
     30                'diningTable', 'dog', 'horse', 'motorbike', 'person',
     31                'pottedPlant', 'sheep', 'sofa', 'train', 'TV']
     32 
     33 # 定义数据格式,设置占位符
     34 net_shape = (300, 300)
     35 # 预处理,以Tensorflow backend, 将输入图片大小改成 300x300,作为下一步输入
     36 img_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
     37 # 输入图像的通道排列形式,'NHWC'表示 [batch_size,height,width,channel]
     38 data_format = 'NHWC'
     39 
     40 # 数据预处理,将img_input输入的图像resize为300大小,labels_pre,bboxes_pre,bbox_img待解析
     41 image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
     42     img_input, None, None, net_shape, data_format,
     43     resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE)
     44 # 拓展为4维变量用于输入
     45 image_4d = tf.expand_dims(image_pre, 0)
     46 
     47 # 定义SSD模型
     48 # 是否复用,目前我们没有在训练所以为None
     49 reuse = True if 'ssd_net' in locals() else None
     50 # 调出基于VGG神经网络的SSD模型对象,注意这是一个自定义类对象
     51 ssd_net = ssd_vgg_300.SSDNet()
     52 # 得到预测类和预测坐标的Tensor对象,这两个就是神经网络模型的计算流程
     53 with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)):
     54     predictions, localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse)
     55 
     56 # 导入官方给出的 SSD 模型参数
     57 ckpt_filename = '../checkpoints/ssd_300_vgg.ckpt'
     58 # ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt'
     59 isess.run(tf.global_variables_initializer())
     60 saver = tf.train.Saver()
     61 saver.restore(isess, ckpt_filename)
     62 
     63 # 在网络模型结构中,提取搜索网格的位置
     64 # 根据模型超参数,得到每个特征层(这里用了6个特征层,分别是4,7,8,9,10,11)的anchors_boxes
     65 ssd_anchors = ssd_net.anchors(net_shape)
     66 """
     67 每层的anchors_boxes包含4个arrayList,前两个List分别是该特征层下x,y坐标轴对于原图(300x300)大小的映射
     68 第三,四个List为anchor_box的长度和宽度,同样是经过归一化映射的,根据每个特征层box数量的不同,这两个List元素
     69 个数会变化。其中,长宽的值根据超参数anchor_sizes和anchor_ratios制定。
     70 """
     71 
     72 
     73 # 加载辅助作图函数
     74 def colors_subselect(colors, num_classes=21):
     75     dt = len(colors) // num_classes
     76     sub_colors = []
     77     for i in range(num_classes):
     78         color = colors[i * dt]
     79         if isinstance(color[0], float):
     80             sub_colors.append([int(c * 255) for c in color])
     81         else:
     82             sub_colors.append([c for c in color])
     83     return sub_colors
     84 
     85 
     86 def bboxes_draw_on_img(img, classes, scores, bboxes, colors, thickness=2):
     87     shape = img.shape
     88     for i in range(bboxes.shape[0]):
     89         bbox = bboxes[i]
     90         color = colors[classes[i]]
     91         # Draw bounding box...
     92         p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
     93         p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
     94         cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
     95         # Draw text...
     96         s = '%s/%.3f' % (l_VOC_CLASS[int(classes[i]) - 1], scores[i])
     97         p1 = (p1[0] - 5, p1[1])
     98         # cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 1.5, color, 3)
     99 
    100 
    101 colors_plasma = colors_subselect(mpcm.plasma.colors, num_classes=21)
    102 
    103 
    104 # 主流程函数
    105 def process_image(img, select_threshold=0.2, nms_threshold=.1, net_shape=(300, 300)):
    106     # select_threshold:box阈值——每个像素的box分类预测数据的得分会与box阈值比较,高于一个box阈值则认为这个box成功框到了一个对象
    107     # nms_threshold:重合度阈值——同一对象的两个框的重合度高于该阈值,则运行下面去重函数
    108 
    109     # 执行SSD模型,得到4维输入变量,分类预测,坐标预测,rbbox_img参数为最大检测范围,本文固定为[0,0,1,1]即全图
    110     rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions, localisations, bbox_img],
    111                                                               feed_dict={img_input: img})
    112 
    113     # ssd_bboxes_select函数根据每个特征层的分类预测分数,归一化后的映射坐标,
    114     # ancohor_box的大小,通过设定一个阈值计算得到每个特征层检测到的对象以及其分类和坐标
    115     rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select(rpredictions, rlocalisations, ssd_anchors,
    116                                                               select_threshold=select_threshold,
    117                                                               img_shape=net_shape,
    118                                                               num_classes=21, decode=True)
    119 
    120     """
    121     这个函数做的事情比较多,这里说的细致一些:
    122     首先是输入,输入的数据为每个特征层(一共6个,见上文)的:
    123                                                 分类预测数据(rpredictions),
    124                                                 坐标预测数据(rlocalisations),
    125                                                 anchors_box数据(ssd_anchors)
    126                                             其中:
    127                                                分类预测数据为当前特征层中每个像素的每个box的分类预测
    128                                                坐标预测数据为当前特征层中每个像素的每个box的坐标预测
    129                                                anchors_box数据为当前特征层中每个像素的每个box的修正数据
    130 
    131         函数根据坐标预测数据和anchors_box数据,计算得到每个像素的每个box的中心和长宽,这个中心坐标和长宽会根据一个算法进行些许的修正,
    132     从而得到一个更加准确的box坐标;修正的算法会在后文中详细解释,如果只是为了理解算法流程也可以不必深究这个,因为这个修正算法属于经验算
    133     法,并没有太多逻辑可循。
    134         修正完box和中心后,函数会计算每个像素的每个box的分类预测数据的得分,当这个分数高于一个阈值(这里是0.5)则认为这个box成功
    135     框到了一个对象,然后将这个box的坐标数据,所属分类和分类得分导出,从而得到:
    136         rclasses:所属分类
    137         rscores:分类得分
    138         rbboxes:坐标
    139 
    140         最后要注意的是,同一个目标可能会在不同的特征层都被检测到,并且他们的box坐标会有些许不同,这里并没有去掉重复的目标,而是在下文
    141     中专门用了一个函数来去重
    142     """
    143 
    144     # 检测有没有超出检测边缘
    145     rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes)
    146     rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400)
    147     # 去重,将重复检测到的目标去掉
    148     rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold=nms_threshold)
    149     # 将box的坐标重新映射到原图上(上文所有的坐标都进行了归一化,所以要逆操作一次)
    150     rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes)
    151 
    152     bboxes_draw_on_img(img, rclasses, rscores, rbboxes, colors_plasma, thickness=8)
    153     return img
    154 
    155 
    156 # 视频物体定位
    157 import imageio
    158 imageio.plugins.ffmpeg.download()
    159 from moviepy.editor import VideoFileClip
    160 
    161 def process_video (input_path, output_path):
    162     video = VideoFileClip(input_path)
    163     result = video.fl_image(process_image)
    164     result.write_videofile(output_path, fps=40)
    165 
    166 video_name = "3.mp4"
    167 input_path = "./Video/input/" + video_name
    168 output_path = "./Video/output/output_" + video_name
    169 process_video(input_path,output_path )

    经过一段时间的等待,终于跑完程序;

    打开Video/input文件夹,查看输出的视频是什么样子的吧!

    四、demo4-视频(显示标签)

    notebook目录下新建ssd_notebook_camera.py:

    # coding: utf-8
    
    
    import os
    import math
    import random
    
    import numpy as np
    import tensorflow as tf
    import cv2
    
    slim = tf.contrib.slim
    
    # get_ipython().magic('matplotlib inline')
    import matplotlib.pyplot as plt
    import matplotlib.image as mpimg
    
    import sys
    
    sys.path.append('../')
    
    from nets import ssd_vgg_300, ssd_common, np_methods
    from preprocessing import ssd_vgg_preprocessing
    from notebooks import visualization_camera  # visualization
    
    # TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
    gpu_options = tf.GPUOptions(allow_growth=True)
    config = tf.ConfigProto(log_device_placement=False, gpu_options=gpu_options)
    isess = tf.InteractiveSession(config=config)
    
    # ## SSD 300 Model
    #
    # The SSD 300 network takes 300x300 image inputs. In order to feed any image, the latter is resize to this input shape (i.e.`Resize.WARP_RESIZE`). Note that even though it may change the ratio width / height, the SSD model performs well on resized images (and it is the default behaviour in the original Caffe implementation).
    #
    # SSD anchors correspond to the default bounding boxes encoded in the network. The SSD net output provides offset on the coordinates and dimensions of these anchors.
    
    # Input placeholder.
    net_shape = (300, 300)
    data_format = 'NHWC'
    img_input = tf.placeholder(tf.uint8, shape=(None, None, 3))
    # Evaluation pre-processing: resize to SSD net shape.
    image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
        img_input, None, None, net_shape, data_format, resize=ssd_vgg_preprocessing.Resize.WARP_RESIZE)
    image_4d = tf.expand_dims(image_pre, 0)
    
    # Define the SSD model.
    reuse = True if 'ssd_net' in locals() else None
    ssd_net = ssd_vgg_300.SSDNet()
    with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)):
        predictions, localisations, _, _ = ssd_net.net(image_4d, is_training=False, reuse=reuse)
    
    # Restore SSD model.
    ckpt_filename = 'E:/SSD/initial_SSD/SSD-Tensorflow-master/checkpoints/ssd_300_vgg.ckpt'  # 可更改为自己的模型路径
    # ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt'
    isess.run(tf.global_variables_initializer())
    saver = tf.train.Saver()
    saver.restore(isess, ckpt_filename)
    
    # SSD default anchor boxes.
    ssd_anchors = ssd_net.anchors(net_shape)
    
    
    # ## Post-processing pipeline
    #
    # The SSD outputs need to be post-processed to provide proper detections. Namely, we follow these common steps:
    #
    # * Select boxes above a classification threshold;
    # * Clip boxes to the image shape;
    # * Apply the Non-Maximum-Selection algorithm: fuse together boxes whose Jaccard score > threshold;
    # * If necessary, resize bounding boxes to original image shape.
    
    
    # Main image processing routine.
    def process_image(img, select_threshold=0.5, nms_threshold=.45, net_shape=(300, 300)):
        # Run SSD network.
        rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions, localisations, bbox_img],
                                                                  feed_dict={img_input: img})
    
        # Get classes and bboxes from the net outputs.
        rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select(
            rpredictions, rlocalisations, ssd_anchors,
            select_threshold=select_threshold, img_shape=net_shape, num_classes=21, decode=True)
    
        rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes)
        rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k=400)
        rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold=nms_threshold)
        # Resize bboxes to original image shape. Note: useless for Resize.WARP!
        rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes)
        return rclasses, rscores, rbboxes
    
    
    # # Test on some demo image and visualize output.
    # path = '../demo/'
    # image_names = sorted(os.listdir(path))
    
    # img = mpimg.imread(path + image_names[-5])
    # rclasses, rscores, rbboxes =  process_image(img)
    
    # # visualization.bboxes_draw_on_img(img, rclasses, rscores, rbboxes, visualization.colors_plasma)
    # visualization.plt_bboxes(img, rclasses, rscores, rbboxes)
    
    
    ##### following are added for camera demo####
    cap = cv2.VideoCapture(r'E:/SSD/initial_SSD/SSD-Tensorflow-master/demo_video/01.mp4')
    fps = cap.get(cv2.CAP_PROP_FPS)
    size = (int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)), int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))
    fourcc = cap.get(cv2.CAP_PROP_FOURCC)
    # fourcc = cv2.CAP_PROP_FOURCC(*'CVID')
    print('fps=%d,size=%r,fourcc=%r' % (fps, size, fourcc))
    delay = 30 / int(fps)
    
    while (cap.isOpened()):
        ret, frame = cap.read()
        if ret == True:
            #          image = Image.open(image_path)
            #          gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
            image = frame
            # the array based representation of the image will be used later in order to prepare the
            # result image with boxes and labels on it.
            image_np = image
            #          image_np = load_image_into_numpy_array(image)
            # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
            image_np_expanded = np.expand_dims(image_np, axis=0)
            # Actual detection.
            rclasses, rscores, rbboxes = process_image(image_np)
            # Visualization of the results of a detection.
            visualization_camera.bboxes_draw_on_img(image_np, rclasses, rscores, rbboxes)
            #          plt.figure(figsize=IMAGE_SIZE)
            #          plt.imshow(image_np)
            cv2.imshow('frame', image_np)
            cv2.waitKey(np.uint(delay))
            print('Ongoing...')
        else:
            break
    cap.release()
    cv2.destroyAllWindows()

    此外还要新建visualization.py:

      1 # Copyright 2017 Paul Balanca. All Rights Reserved.
      2 #
      3 # Licensed under the Apache License, Version 2.0 (the "License");
      4 # you may not use this file except in compliance with the License.
      5 # You may obtain a copy of the License at
      6 #
      7 #     http://www.apache.org/licenses/LICENSE-2.0
      8 #
      9 # Unless required by applicable law or agreed to in writing, software
     10 # distributed under the License is distributed on an "AS IS" BASIS,
     11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     12 # See the License for the specific language governing permissions and
     13 # limitations under the License.
     14 # ==============================================================================
     15 import cv2
     16 import random
     17 
     18 import matplotlib.pyplot as plt
     19 import matplotlib.image as mpimg
     20 import matplotlib.cm as mpcm
     21 #这是一个mixin类,用于支持标量数据到RGBA映射。ScalarMappable在从给定的colormap返回RGBA颜色之前使用数据规范化。
     22 
     23 def num2class(n):
     24     import datasets.pascalvoc_2007 as pas
     25     x = pas.pascalvoc_common.VOC_LABELS.items()
     26     for name, item in x:
     27         if n in item:
     28             # print(name)
     29             return name
     30 # =========================================================================== #
     31 # Some colormaps.
     32 # =========================================================================== #
     33 def colors_subselect(colors, num_classes=21):
     34     dt = len(colors) // num_classes
     35     sub_colors = []
     36     for i in range(num_classes):
     37         color = colors[i * dt]
     38         if isinstance(color[0], float):
     39             sub_colors.append([int(c * 255) for c in color])
     40         else:
     41             sub_colors.append([c for c in color])
     42     return sub_colors
     43 
     44 
     45 colors_plasma = colors_subselect(mpcm.plasma.colors, num_classes=21)
     46 colors_tableau = [(255, 255, 255), (31, 119, 180), (174, 199, 232), (255, 127, 14), (255, 187, 120),
     47                   (44, 160, 44), (152, 223, 138), (214, 39, 40), (255, 152, 150),
     48                   (148, 103, 189), (197, 176, 213), (140, 86, 75), (196, 156, 148),
     49                   (227, 119, 194), (247, 182, 210), (127, 127, 127), (199, 199, 199),
     50                   (188, 189, 34), (219, 219, 141), (23, 190, 207), (158, 218, 229)]
     51 
     52 
     53 # =========================================================================== #
     54 # OpenCV drawing.
     55 # =========================================================================== #
     56 def draw_lines(img, lines, color=[255, 0, 0], thickness=2):
     57     """Draw a collection of lines on an image.
     58     """
     59     for line in lines:
     60         for x1, y1, x2, y2 in line:
     61             cv2.line(img, (x1, y1), (x2, y2), color, thickness)
     62 
     63 
     64 def draw_rectangle(img, p1, p2, color=[255, 0, 0], thickness=2):
     65     cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
     66 
     67 
     68 def draw_bbox(img, bbox, shape, label, color=[255, 0, 0], thickness=2):
     69     p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
     70     p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
     71     cv2.rectangle(img, p1[::-1], p2[::-1], color, thickness)
     72     p1 = (p1[0] + 15, p1[1])
     73     cv2.putText(img, str(label), p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.5, color, 1)
     74 
     75 
     76 def bboxes_draw_on_img(img, classes, scores, bboxes, colors=dict(), thickness=2):
     77     shape = img.shape
     78     ####add 20180516#####
     79     # colors=dict()
     80     ####add #############
     81     for i in range(bboxes.shape[0]):
     82         bbox = bboxes[i]
     83         if classes[i] not in colors:
     84             colors[classes[i]] = (random.random(), random.random(), random.random())
     85         p1 = (int(bbox[0] * shape[0]), int(bbox[1] * shape[1]))
     86         p2 = (int(bbox[2] * shape[0]), int(bbox[3] * shape[1]))
     87         cv2.rectangle(img, p1[::-1], p2[::-1], colors[classes[i]], thickness)
     88         s = '%s/%.3f' % (num2class(classes[i]), scores[i])
     89         p1 = (p1[0] - 5, p1[1])
     90         cv2.putText(img, s, p1[::-1], cv2.FONT_HERSHEY_DUPLEX, 0.4, colors[classes[i]], 1)
     91 
     92     # =========================================================================== #
     93 
     94 
     95 # Matplotlib show...
     96 # =========================================================================== #
     97 def plt_bboxes(img, classes, scores, bboxes, figsize=(10, 10), linewidth=1.5):
     98     """Visualize bounding boxes. Largely inspired by SSD-MXNET!
     99     """
    100     fig = plt.figure(figsize=figsize)
    101     plt.imshow(img)
    102     height = img.shape[0]
    103     width = img.shape[1]
    104     colors = dict()
    105     for i in range(classes.shape[0]):
    106         cls_id = int(classes[i])
    107         if cls_id >= 0:
    108             score = scores[i]
    109             if cls_id not in colors:
    110                 colors[cls_id] = (random.random(), random.random(), random.random())
    111             ymin = int(bboxes[i, 0] * height)
    112             xmin = int(bboxes[i, 1] * width)
    113             ymax = int(bboxes[i, 2] * height)
    114             xmax = int(bboxes[i, 3] * width)
    115             rect = plt.Rectangle((xmin, ymin), xmax - xmin,
    116                                  ymax - ymin, fill=False,
    117                                  edgecolor=colors[cls_id],
    118                                  linewidth=linewidth)
    119             plt.gca().add_patch(rect)
    120             ##class_name = str(cls_id) #commented 20180516
    121             #### added 20180516#####
    122             class_name = num2class(cls_id)
    123             #### added end #########
    124             plt.gca().text(xmin, ymin - 2,
    125                            '{:s} | {:.3f}'.format(class_name, score),
    126                            bbox=dict(facecolor=colors[cls_id], alpha=0.5),
    127                            fontsize=12, color='white')
    128     plt.show()
  • 相关阅读:
    PHP操作数据库类
    Apache多站点配置
    NCF HTTP错误502.5-ANCM进程外启动失败
    NCF 中遇到 无法找到数据库配置:Local 后如何解决
    NCF 中遇到 A circular dependency was detected for the service of type 怎么排查
    NCF 如何在Xncf页面表单中使用上传功能
    NCF 如何在Xncf中使用富文本编辑器
    gRPC系列(一)-什么是gRPC
    高性能AVM框架应势而来
    [经验分享]MySQL8.0及以上版本 关闭log-bin 功能
  • 原文地址:https://www.cnblogs.com/pacino12134/p/10380733.html
Copyright © 2020-2023  润新知