• MapReduce之浅析Map接口和Reduce接口


    import java.io.IOException;
    import java.util.StringTokenizer;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.IntWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapred.InputFormat;
    import org.apache.hadoop.mapred.JobConf;
    import org.apache.hadoop.mapred.Partitioner;
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.Mapper;
    import org.apache.hadoop.mapreduce.Reducer;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    import org.apache.hadoop.util.GenericOptionsParser;
    
    public class WordCount {
    
      public static class TokenizerMapper 
           extends Mapper<Object, Text, Text, IntWritable>{
        
        private final static IntWritable one = new IntWritable(1);
        private Text word = new Text();
          
        public void map(Object key, Text value, Context context
                        ) throws IOException, InterruptedException {
            String line = value.toString();
          StringTokenizer itr = new StringTokenizer(line);
          while (itr.hasMoreTokens()) {
            word.set(itr.nextToken().toLowerCase());
            context.write(word, one);
          }
        }
      }
      
      public static class IntSumReducer 
           extends Reducer<Text,IntWritable,Text,IntWritable> {
        private IntWritable result = new IntWritable();
    
        public void reduce(Text key, Iterable<IntWritable> values, 
                           Context context
                           ) throws IOException, InterruptedException {
          int sum = 0;
          for (IntWritable val : values) {
            sum += val.get();
          }
          result.set(sum);
          context.write(key, new IntWritable(sum));
        }
      }
    
      public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
        if (otherArgs.length != 2) {
          System.err.println("Usage: wordcount <in> <out>");
          System.exit(2);
        }
        Job job = new Job(conf, "word count");
        job.setJarByClass(WordCount.class);
        job.setMapperClass(TokenizerMapper.class);
        job.setCombinerClass(IntSumReducer.class);
        job.setReducerClass(IntSumReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
        FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
        System.exit(job.waitForCompletion(true) ? 0 : 1);
      }
    }

    http://www.cnblogs.com/xuqiang/archive/2011/06/05/2071935.html

    关键语句:

    Job job = new Job(conf, "word count");//构造一个job作业

    job.setMapperClass(TokenizerMapper.class);//设置job作业的map类

    job.setReducerClass(IntSumReducer.class);//设置job作业的reduce类

    FileInputFormat.addInputPath(job, new Path(otherArgs[0]));//设置输入路径

    FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//设置输出路径

    System.exit(job.waitForCompletion(true) ? 0 : 1);//等待Job完成

    图:数据流程图

    InputDataFormat类将行记录变成<行号,行内容>对;

    Mapper类将记录行<行号,行内容>变成<键值,键对应内容>;

    MapReduceFramwok框架将相同键值组合成<键值,对应内容列表>;

    Reduce类中就是把<键值,对应内容列表>对变成<键值,键对应内容>;

    我们所关注的是Mapper类Reduce类

    前言:数据在整体框架上能够流动是因为key和value是可以序列化和反序列化的;

    value值类型通过接口Writable来定义实现;key和value值类型可以通过WritableComparalbe<T>接口实现;这些通过类实现,那么这个类就是该key和value的数据类型。

    系统已经预定义实现了如下类:

    同理:对于Mapper类Reduce类

    一个map类必须实现Mapper接口,一个reduce类必须实现Reduce接口;

    如何实现:

    重点是实现Mapper接口下的函数map;Reduce接口的reduce函数。具体原型及其代码见wordcount代码。

    其中Mapper接口继承于MapReduceBase类;Reduce接口继承于MapReduceBase类。

  • 相关阅读:
    底部菜单栏之Fragment的详细介绍和使用方法
    Warm up 2
    如何做好一位资深的web前端工程师
    使用 HTML5 canvas 绘制精美的图形
    计算元素距离浏览器左边的距离
    [JSOI2016]独特的树叶
    【SDOI2009】Elaxia的路线
    【SCOI2009】最长距离
    【SCOI2009】围豆豆
    【AHOI2005】穿越磁场
  • 原文地址:https://www.cnblogs.com/miner007/p/3738957.html
Copyright © 2020-2023  润新知