• POJ 3468 A Simple Problem with Integers(线段树,区间更新,区间求和)


    A Simple Problem with Integers
    Time Limit: 5000MS   Memory Limit: 131072K
    Total Submissions: 67511   Accepted: 20818
    Case Time Limit: 2000MS

    Description

    You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.

    Input

    The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
    The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
    Each of the next Q lines represents an operation.
    "C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
    "Q a b" means querying the sum of Aa, Aa+1, ... , Ab.

    Output

    You need to answer all Q commands in order. One answer in a line.

    Sample Input

    10 5
    1 2 3 4 5 6 7 8 9 10
    Q 4 4
    Q 1 10
    Q 2 4
    C 3 6 3
    Q 2 4
    

    Sample Output

    4
    55
    9
    15

    Hint

    The sums may exceed the range of 32-bit integers.
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <string>
    #include <cmath>
    #include <vector>
    #include <queue>
    #include <map>
    #include <set>
    #include <stack>
    #include <algorithm>
    using namespace std;
    #define root 1,n,1
    #define lson l,mid,rt<<1
    #define rson mid+1,r,rt<<1|1
    #define lr rt<<1
    #define rr rt<<1|1
    typedef long long LL;
    const int oo = 1e9+7;
    const double PI = acos(-1.0);
    const double eps = 1e-6 ;
    const int N = 100010;
    const int mod = 2333333;
    int n , m ;
    LL sum[N<<2] , lazy[N<<2] , e[N] , tot ;
    
    void Up( int rt ) {
        sum[rt] = sum[lr] + sum[rr];
    }
    void Down( int l , int r , int rt ) {
        if( lazy[rt] != 0 ) {
            int mid = (l+r)>>1;
            sum[lr] += lazy[rt]*(mid-l+1) , sum[rr] += lazy[rt]*(r-mid);
            lazy[lr] += lazy[rt] , lazy[rr] += lazy[rt];
            lazy[rt] = 0 ;
        }
    }
    void build( int l , int r , int rt ){
        lazy[rt] = 0 ;
        if( l == r ) {
            sum[rt] = e[tot++];
            return ;
        }
        int mid = (l+r)>>1;
        build(lson),build(rson);
        Up(rt);
    }
    void update( int l , int r , int rt , int L , int R , LL val ) {
        if( L == l && r == R ) {
            sum[rt] += val*(r-l+1) ;
            lazy[rt] += val;
            return ;
        }
        Down( l , r , rt );
        int mid = (l+r)>>1;
        if( R <= mid ) update(lson,L,R,val);
        else if( L > mid ) update(rson,L,R,val);
        else update(lson,L,mid,val) , update(rson,mid+1,R,val);
        Up(rt);
    }
    LL query( int l , int r , int rt , int L , int R ) {
        if( L == l && r == R ) {
            return sum[rt];
        }
        Down(l,r,rt);
        int mid = (l+r)>>1;
        if( R <= mid ) return query(lson,L,R);
        else if( L > mid ) return query(rson,L,R);
        else return query(lson,L,mid) + query(rson,mid+1,R);
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("in.txt","r",stdin);
    //        freopen("out.txt","w",stdout);
        #endif // LOCAL
        char s[10]; int x , y ; LL c ;
        while( ~scanf("%d%d",&n,&m ) ) {
            tot = 0 ;
            for( int i = 0 ; i < n ; ++i ) {
                scanf("%I64d",&e[i]);
            }
            build(root);
            while(m--) {
                scanf("%s",s);
                if( s[0] == 'Q' ) {
                    scanf("%d%d",&x,&y);
                    printf("%I64d
    ",query(root,x,y));
                }
                else {
                    scanf("%d%d%I64d",&x,&y,&c);
                    update(root,x,y,c);
                }
            }
        }
    }
    View Code
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    spring详解(五)——事物管理
    spring详解(四)——JDBC
    spring详解(三)——AOP
    Spring详解(二)
    Spring详解(一)
    springMVC(九)——restful风格和异常处理
    Linux 文件权限
    如何使用Git从GitHub上下载项目
    Spring(1)
    SpringMvc(4)
  • 原文地址:https://www.cnblogs.com/hlmark/p/4247916.html
Copyright © 2020-2023  润新知