Number of Submatrices That Sum to Target (H)
题目
Given a matrix
and a target
, return the number of non-empty submatrices that sum to target.
A submatrix x1, y1, x2, y2
is the set of all cells matrix[x][y]
with x1 <= x <= x2
and y1 <= y <= y2
.
Two submatrices (x1, y1, x2, y2)
and (x1', y1', x2', y2')
are different if they have some coordinate that is different: for example, if x1 != x1'
.
Example 1:
Input: matrix = [[0,1,0],[1,1,1],[0,1,0]], target = 0
Output: 4
Explanation: The four 1x1 submatrices that only contain 0.
Example 2:
Input: matrix = [[1,-1],[-1,1]], target = 0
Output: 5
Explanation: The two 1x2 submatrices, plus the two 2x1 submatrices, plus the 2x2 submatrix.
Example 3:
Input: matrix = [[904]], target = 0
Output: 0
Constraints:
1 <= matrix.length <= 100
1 <= matrix[0].length <= 100
-1000 <= matrix[i] <= 1000
-10^8 <= target <= 10^8
题意
在一个矩阵中找到所有的子矩阵,使得子矩阵的和正好为指定值。
思路
使用前缀和方法解决。首先求出从matrix[0][0]到任意一点组成的子矩阵的和;接着固定子矩阵的上边i和下边j,这个子矩阵的左边是列0,改变右边,计算左侧形成的小矩阵的前缀和,每次计算一个前缀和,要进行两次判断:1. 和本身是否等于目标值;2. 和减去目标值的值是否是之前出现过的前缀和。
代码实现
Java
class Solution {
public int numSubmatrixSumTarget(int[][] matrix, int target) {
int ans = 0;
int m = matrix.length, n = matrix[0].length;
int[][] sum = new int[m][n];
for (int i = 0; i < m; i++) {
int tmp = 0;
for (int j = 0; j < n; j++) {
tmp += matrix[i][j];
sum[i][j] = (i == 0 ? 0 : sum[i - 1][j]) + tmp;
}
}
for (int i = 0; i < m; i++) {
for (int j = i; j < m; j++) {
Map<Integer, Integer> pre = new HashMap();
for (int k = 0; k < n; k++) {
int cur = sum[j][k] - (i == 0 ? 0 : sum[i - 1][k]);
if (cur == target) ans++;
if (pre.containsKey(cur - target)) ans += pre.get(cur - target);
pre.put(cur, pre.getOrDefault(cur, 0) + 1);
}
}
}
return ans;
}
}