• Storm入门(十)Twitter Storm: Transactional Topolgoy简介


    作者: xumingming | 可以转载, 但必须以超链接形式标明文章原始出处和作者信息及版权声明
    网址: http://xumingming.sinaapp.com/736/twitter-storm-transactional-topolgoy/

    本文翻译自: https://github.com/nathanmarz/storm/wiki/Transactional-topologies

    概述

    Storm通过保证每个tuple至少被处理一次来提供 可靠的数据处理 。关于这一点最常被问到的问题就是 “既然tuple可能会被重写发射(replay), 那么我们怎么在storm上面做统计个数之类的事情呢?storm有可能会重复计数吧?”

    Storm 0.7.0引入了Transactional Topology, 它可以保证每个tuple”被且仅被处理一次”, 这样你就可以实现一种非常准确,非常可扩展,并且高度容错方式来实现计数类应用。

    跟 Distributed RPC 类似, transactional topology其实不能算是storm的一个特性,它其实是用storm的底层原语spout, bolt, topology, stream等等抽象出来的一个特性。

    这篇文章解释了事务性topology是怎样的一种抽象,怎样使用它的api,同时也讨论了有关它实现的一些细节。

    概念

    让我们一步步地建立transactional topology的抽象。我们先提出一种最简单的抽象方式, 然后一步步的完善改进,最后介绍storm代码里面所使用的抽象方式。

    第一个设计: 最简单的抽象方法

    事务性topology背后的核心概念是要在处理数据的提供一个强顺序性。这种强顺序性最简单的表现、同时也是我们第一个设计就是:我们每次只处理一个tuple, 除非这个tuple处理成功,否则我们不去处理下一个tuple。

    每一个tuple都跟一个transaction id相关联。如果这个tuple处理失败了,然后需要重写发射,那么它会被重新发射 — 并且附着同样的transaction id。这里说的trasaction id其实就是一个数字, 来一个tuple,它就递增一个。所以第一个tuple的transaction id是1, 第二个tuple的transaction id是2,等等等等。

    tuple的强顺序性使得我们即使在tuple重发的时候也能够实现“一次而且只有一次”的语义。 让我们看个例子:

    比如你想统一个stream里面tuple的总数。那么为了保证统计数字的准确性,你在数据库里面不但要保存tuple的个数, 还要保存这个数字所对应的最新的transaction id。 当你的代码要到数据库里面去更新这个数字的时候,你要判断只有当新的transaction id跟数据库里面保存的transaction id不一样的时候才去更新。考虑两种情况:

    • 数据库里面的transaction id跟当前的transaction id不一样: 由于我们transaction的强顺序性,我们知道当前的tuple肯定没有统计在数据库里面。所以我们可以安全地递增这个数字,并且更新这个transaction id.
    • 数据库里面的transaction id一样: 那么我们知道当前tuple已经统计在数据库里面了,那么可以忽略这个更新。这个tuple肯定之前在更新了数据库之后,反馈给storm的时候失败了(ack超时之类的)。

    这个逻辑以及事务的强顺序性保证数据库里面的个数(count)即使在tuple被重发的时候也是准确的。这个主意(保存count + transaction-id)是Kafka的开发者在 这个设计文档 里面提出来的。

    更进一步来说,这个topology可以在一个事务里面更新很多不同的状态,并且可以到达”一次而且只有一次的逻辑”。如果有任何失败,那么已经成功的更新你再去更新它会忽略,失败的更新你去再次更新它则会接受。比如,如果你在处理一个url流,你可以更新每个url的转发次数, 同时更新每个domain下url的转发次数。

    这个简单设计有一个很大的问题, 那就是你需要等待一个tuple完全处理成功之后才能去处理下一个tuple。这个性能是非常差的。这个需要大量的数据库调用(只要每个tuple一个数据库调用), 而且这个设计也没有利用到storm的并行计算能力, 所以它的可扩展能力是非常差的。

    第二个设计

    与每次只处理一个tuple的简单方案相比, 一个更好的方案是每个transaction里面处理一批tuple。所以如果你在做一个计数应用, 那么你每次更新到总数里面的是这一整个batch的tuple数量。如果这个batch失败了,那么你重新replay这整个batch。相应地, 我们不是给每个tuple一个transaction id而是给整个batch一个transaction id,batch与batch之间的处理是强顺序性的, 而batch内部是可以并行的。下面这个是设计图:

    transactional-batches

    所以如果你每个batch处理1000个tuple的话, 那么你的应用将会少1000倍的数据库调用。同时它利用了storm的并行计算能力(每个batch内部可以并行)

    虽然这个设计比第一个设计好多了, 它仍然不是一个完美的方案。topology里面的worker会花费大量的时间等待计算的其它部分完成。 比如看下面的这个计算。

    在bolt 1完成它的处理之后, 它需要等待剩下的bolt去处理当前batch, 直到发射下一个batch。

    第三个设计(storm采用的设计)

    一个我们需要意识到的比较重要的问题是,为了实现transactional的特性,在处理一批tuples的时候,不是所有的工作都需要强顺序性的。比如,当做一个全局计数应用的时候, 整个计算可以分为两个部分。

    • 计算这个batch的局部数量。
    • 把这个batch的局部数量更新到数据库里面去。

    其中第二步在多个batch之前需要保证强的顺序性, 但是第一步并不许要, 所以我们可以把第一步并行化。所以当第一个batch在更新它的个数进入数据库的时候,第2到10个batch可以开始计算它们的局部数量了。

    Storm通过把一个batch的计算分成两个阶段来实现上面所说的原理:

    • processing阶段: 这个阶段很多batch可以并行计算。
    • commit阶段: 这个阶段各个batch之间需要有强顺序性的保证。所以第二个batch必须要在第一个batch成功提交之后才能提交。

    这两个阶段合起来称为一个transaction。许多batch可以在processing阶段的任何时刻并行计算,但是只有一个batch可以处在commit阶段。如果一个batch在processing或者commit阶段有任何错误, 那么整个transaction需要被replay。

    设计细节

    当使用Transactional Topologies的时候, storm为你做下面这些事情:

    1) 管理状态: Storm把所有实现Transactional Topologies所必须的状态保存在zookeeper里面。 这包括当前transaction id以及定义每个batch的一些元数据。

    2) 协调事务: Storm帮你管理所有事情, 以帮你决定在任何一个时间点是该proccessing还是该committing。

    3) 错误检测: Storm利用acking框架来高效地检测什么时候一个batch被成功处理了,被成功提交了,或者失败了。Storm然后会相应地replay对应的batch。你不需要自己手动做任何acking或者anchoring — storm帮你搞定所有事情。

    4) 内置的批处理API: Storm在普通bolt之上包装了一层API来提供对tuple的批处理支持。Storm管理所有的协调工作,包括决定什么时候一个bolt接收到一个特定transaction的所有tuple。Storm同时也会自动清理每个transaction所产生的中间数据。

    5) 最后,需要注意的一点是Transactional Topologies需要一个可以完全重发(replay)一个特定batch的消息的队列系统(Message Queue)。 Kestrel 之类的技术做不到这一点。而 Apache的Kafka 对于这个需求来说是正合适的。 storm-contrib 里面的 storm-kafka 实现了这个。

    一个基本的例子

    你可以通过使用 TransactionalTopologyBuilder 来创建transactional topology. 下面就是一个transactional topology的定义, 它的作用是计算输入流里面的tuple的个数。这段代码来自storm-starter里面的 TransactionalGlobalCount 。

    复制代码
    MemoryTransactionalSpout spout = new MemoryTransactionalSpout(
               DATA, new Fields("word"), PARTITION_TAKE_PER_BATCH);
    TransactionalTopologyBuilder builder = new TransactionalTopologyBuilder(
               "global-count", "spout", spout, 3);
    builder.setBolt("partial-count", new BatchCount(), 5)
            .shuffleGrouping("spout");
    builder.setBolt("sum", new UpdateGlobalCount())
            .globalGrouping("partial-count");
    复制代码

    TransactionalTopologyBuilder 接受如下的参数

    • 这个transaction topology的id
    • spout在整个topology里面的id。
    • 一个transactional spout。
    • 一个可选的这个transactional spout的并行度。

    topology的id是用来在zookeeper里面保存这个topology的当前进度的,所以如果你重启这个topology, 它可以接着前面的进度继续执行。

    一个transaction topology里面有一个唯一的 TransactionalSpout , 这个spout是通过 TransactionalTopologyBuilder 的构造函数来制定的。在这个例子里面, MemoryTransactionalSpout 被用来从一个内存变量里面读取数据(DATA)。第二个参数制定数据的fields, 第三个参数指定每个batch的最大tuple数量。关于如何自定义 TransactionalSpout 我们会在后面介绍。

    现在说说 bolts。这个topology并行地计算tuple的总数量。第一个 bolt:BatchBolt ,随机地把输入tuple分给各个task,然后各个task各自统计局部数量。第二个 bolt:UpdateBlobalCount , 用全局grouping来从汇总这个batch的总的数量。然后再把总的数量更新到数据库里面去。

    下面是 BatchCount 的定义:

    复制代码
    public static class BatchCount extends BaseBatchBolt {
        Object _id;
        BatchOutputCollector _collector;
    
        int _count = 0;
    
        @Override
        public void prepare(Map conf, TopologyContext context,
                    BatchOutputCollector collector, Object id) {
            _collector = collector;
            _id = id;
        }
    
        @Override
        public void execute(Tuple tuple) {
            _count++;
        }
    
        @Override
        public void finishBatch() {
            _collector.emit(new Values(_id, _count));
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("id", "count"));
        }
    }
    复制代码

    storm会为每个batch创建这个一个 BatchCount 对象。而这些 BatchCount 是运行在 BatchBoltExecutor 里面的。而 BatchBoltExecutor 负责创建以及清理这个对象的实例。

    这个对象的prepare方法接收如下参数:

    • 包含storm config信息的map。
    • TopologyContext
    • OutputCollector
    • 这个batch的id。而在Transactional Topologies里面, 这个id则是一个 TransactionAttempt对象。

    这个batch bolt的抽象在DRPC里面也可以用, 只是id的类型不一样而已。BatchBolt其实真的接收一个id类型的参数 — 它是一个java模板类,所以如果你只是想在transactioinal topology里面使用这个BatchBolt,你可以这样定义:

    public abstract class BaseTransactionalBolt
           extends BaseBatchBolt<TransactionAttempt> {
    }

    在transaction topology里面发射的所有的tuple都必须以 TransactionAttempt 作为第一个field, 然后storm可以根据这个field来判断哪些tuple属于一个batch。所以你在发射tuple的时候需要满足这个条件。

    TransactionAttempt 包含两个值: 一个transaction id,一个attempt id。transaction id的作用就是我们上面介绍的对于每个batch是唯一的,而且不管这个batchreplay多少次都是一样的。attempt id是对于每个batch唯一的一个id, 但是对于统一个batch,它replay之后的attempt id跟replay之前就不一样了, 我们可以把attempt id理解成replay-times, storm利用这个id来区别一个batch发射的tuple的不同版本。

    transaction id对于每个batch加一, 所以第一个batch的transaction id是”1″, 第二个batch是”2″,以此类推。

    execute方法会为batch里面的每个tuple执行一次,你应该把这个batch里面的状态保持在一个本地变量里面。对于这个例子来说, 它在execute方法里面递增tuple的个数。

    最后, 当这个bolt接收到某个batch的所有的tuple之后, finishBatch方法会被调用。这个例子里面的BatchCount类会在这个时候发射它的局部数量到它的输出流里面去。

    下面是 UpdateGlobalCount 类的定义。

    复制代码
    public static class UpdateGlobalCount
               extends BaseTransactionalBolt
               implements ICommitter {
        TransactionAttempt _attempt;
        BatchOutputCollector _collector;
    
        int _sum = 0;
    
        @Override
        public void prepare(Map conf,
                            TopologyContext context,
                            BatchOutputCollector collector,
                            TransactionAttempt attempt) {
            _collector = collector;
            _attempt = attempt;
        }
    
        @Override
        public void execute(Tuple tuple) {
            _sum+=tuple.getInteger(1);
        }
    
        @Override
        public void finishBatch() {
            Value val = DATABASE.get(GLOBAL_COUNT_KEY);
            Value newval;
            if(val == null ||
                    !val.txid.equals(_attempt.getTransactionId())) {
                newval = new Value();
                newval.txid = _attempt.getTransactionId();
                if(val==null) {
                    newval.count = _sum;
                } else {
                    newval.count = _sum + val.count;
                }
                DATABASE.put(GLOBAL_COUNT_KEY, newval);
            } else {
                newval = val;
            }
            _collector.emit(new Values(_attempt, newval.count));
        }
    
        @Override
        public void declareOutputFields(OutputFieldsDeclarer declarer) {
            declarer.declare(new Fields("id", "sum"));
        }
    }
    复制代码

    UpdateGlobalCount 是Transactional Topologies相关的类, 所以它继承自 BaseTransactionalBolt 。在execute方法里面, UpdateGlobalCount 累积这个batch的计数, 比较有趣的是finishBatch方法。

    首先, 注意这个bolt实现了 ICommitter 接口。这告诉storm要在这个事务的commit阶段调用 finishBatch 方法。所以对于finishBatch的调用会保证强顺序性(顺序就是transaction id的升序), 而相对来说execute方法在任何时候都可以执行,processing或者commit阶段都可以。另外一种把bolt标识为commiter的方法是调用 TransactionalTopologyBuilder 的 setCommiterBolt 来添加Bolt(而不是setBolt)。

    UpdateGlobalCount 里面finishBatch方法的逻辑是首先从数据库中获取当前的值,并且把数据库里面的transaction id与当前这个batch的transaction id进行比较。如果他们一样, 那么忽略这个batch。否则把这个batch的结果加到总结果里面去,并且更新数据库。

    关于transactional topology的更深入的例子可以卡看storm-starter里面的 TransactionalWords类, 这个类里面会在一个事务里面更新多个数据库。

    Transactional Topology API

    这一节介绍Transaction topology API

    Bolts

    在一个transactional topology里面最多有三种类型的bolt:

    • BasicBolt : 这个bolt不跟batch的tuple打交道,它只基于单个tuple的输入来发射新的tuple。
    • BatchBolt : 这个bolt处理batch在一起的tuples。对于每一个tuple调用execute方法。而在整个batch处理完成的时候调用finishBatch方法
    • 被标记成Committer的BatchBolt: 和普通的BatchBolt的唯一的区别是finishBatch这个方法被调用的时机。作为committer的BatchBolt的finishBatch方法在commit阶段调用。一个batch的commit阶段由storm保证只在前一个batch成功提交之后才会执行。并且它会重试直到topology里面的所有bolt在commit完成提交。有两个方法可以让一个普通BatchBolt变成committer: 1) 实现 ICommitter 接口 2) 通过TransactionalTopologyBuilder的setCommitterBolt方法把BatchBolt添加到topology里面去。
      Processing phase vs. commit phase in bolts

      为了搞清除processing阶段与commit阶段的区别, 让我们看个例子:

      在这个topology里面只有用红线标出来的是committers。

      在processing阶段, bolt A会处理从spout发射出来的整个batch。并且发射tuple给bolt B和bolt C。Bolt B是一个committer, 所以它会处理所有的tuple, 但是不会调用 finishBatch方法。Bolt C同样也不会调用 finishBatch 方法, 它的原因是:它不知道它有没有从Bolt B接收到所有的tuple。(因为Bolt B还在等着事务提交)最后Bolt D会接收到Bolt C在调用execute方法的时候发射的所有的tuple。

      当batch提交的时候, Bolt B上的 finishBatch 被调用。Bolt C现在可以判断它接收到了所有的tuple, 所以可以调用 finishBatch 了。最后Bolt D接收到了它的所有的tuple所以就调用finishBatch了。

      要注意的是,虽然Bolt D是一个committer, 它在接收到整个batch的tuple之后不需要等待第二个commit信号。因为它是在commit阶段接收到的整个batch,它会调用finishBatch来完成整个事务。

      Acking

      注意, 你不需要显式地去做任何的acking或者anchoring。storm在背后都做掉了。(storm对transactional topolgies里面的acking机制进行了高度的优化)

      Failing a transaction

      在使用普通bolt的时候, 你可以通过调用OutputCollector的fail方法来fail这个tuple所在的tuple树。由于Transactional Topologies把acking框架从用户的视野里面隐藏掉了, 它提供一个不同的机制来fail一个batch(从而使得这个batch被replay)。只要抛出一个 FailedException 就可以了。跟普通的异常不一样, 这个异常只会导致当前的batch被replay, 而不会使整个进程crash掉。

      Transactional spout

      TransactionalSpout接口跟普通的Spout接口完全不一样。一个TransactionalSpout的实现一个batch一个batch的tuple, 而且必须保证同一个batch的transaction id始终一样。

      在transactional topology中运行的时候, transactional spout看起来是这样的一个结构:

      在图的左边的coordinator是一个普通的storm的spout — 它一直为事务的batch发射tuple。Emitter则像一个普通的storm bolt,它负责为每个batch实际发射tuple。emitter以all grouping的方式订阅coordinator的”batch emit”流。

      由于TransactionalSpout发射的tuple可能需要会被replay, 因此需要具有幂等性(否则多次replay同一个tuple会使得最后的结果不对), 为了实现幂等性,需要保存Transactional Spout的少量的状态,这个状态是保存在ZooKeeper里面的。

      关于如何实现一个 TransactionalSpout 的细节可以参见 Javadoc 。

      Partitioned Transactional Spout

      一种常见的TransactionalSpout是那种从多个queue broker夺取数据然后再发射的tuple。比如 TransactionalKafkaSpout 是这样工作的。 IPartitionedTransactionalSpout 把这些管理每个分区的状态以保证可以replay的幂等性的工作都自动化掉了。更多可以参考 Javadoc

      配置

      Transactional Topologies有两个重要的配置:

      • Zookeeper: 默认情况下,transactional topology会把状态信息保存在主zookeeper里面(协调集群的那个)。你可以通过这两个配置来指定其它的zookeeper:” transactional.zookeeper.servers ” 和 “ transactional.zookeeper.port “。
      • 同时活跃的batch数量:你必须设置同时处理的batch数量。你可以通过” topology.max.spout.pending ” 来指定, 如果你不指定,默认是1。

      实现

      Transactional Topologies的实现是非常优雅的。管理提交协议,检测失败并且串行提交看起来很复杂,但是使用storm的原语来进行抽象是非常简单的。

      • transactional topology里面的spout是一个子topology, 它由一个spout和一个bolt组成。
        • spout是协调者,它只包含一个task。
        • bolt是发射者
        • bolt以all grouping的方式订阅协调者的输出。
        • 元数据的序列化用的是kryo。
      • 协调者使用acking框架来决定什么时候一个batch被成功执行完成,然后去决定一个batch什么时候被成功提交。
      • 状态信息被以 RotatingTransactionalState 的形式保存在zookeeper里面了。
      • commiting bolts以all grouping的方式订阅协调者的commit流。
      • CoordinatedBolt被用来检测一个bolt是否收到了一个特定batch的所有tuple。
        • 这一点上面跟DRPC里面是一样的。
        • 对于commiting bolt来说, 他会一直等待, 知道从coordinator的commit流里面接收到一个tuple之后,它才会调用 finishBatch 方法。
        • 所以在没有从coordinator的commit流接收到一个tuple之前,committing bolt不可能调用 finishBolt 方法。
     
     
  • 相关阅读:
    USACO 3.3.1 Riding the Fences 骑马修栅栏(欧拉回路)
    USACO 3.2.6 Sweet Butter 香甜的黄油(最短路)
    USACO 1.3.4 Prime Cryptarithm 牛式(模拟枚举)
    USACO 1.3.3 Calf Flac(Manacher算法)
    USACO 1.2.2 Transformations 方块转换
    小希的迷宫(并查集判环)
    Is It A Tree?(并查集)
    Manacher算法——求最长回文子串
    Live Love(思维)
    Longge's problem(欧拉函数应用)
  • 原文地址:https://www.cnblogs.com/liuys635/p/10786521.html
Copyright © 2020-2023  润新知