题意:
1.初始至少需要向多少个学校发放软件,使得网络内所有的学校最终都能得到软件。
2.至少需要添加几条传输线路(边),使任意向一个学校发放软件后,经过若干次传送,网络内所有的学校最终都能得到软件。
思路:
我们先把图中的强连通分量缩点
经过缩点后,就可以把强连通分量看成一个个独立的点,这张图可以模拟一下,有离散的点,有一些连起来的点,咳咳,但绝对不是连通的!
题目的问题1那不就是在新图上搞一搞出度==0的点的数量
题目的问题2要我们在这张新图上搞一个强连通图,我们可以根据强连通的性质,也就是每个点都要有被指向边和出去的边,那么也就是求一下每个点(强连通分量)的入度和出度,把出度==0的点个数加起来,把入度==0的点个数加起来,比一比谁大,输出谁,因为我们可以直接在入度为0和出度为0的两点间加边,所以取大的那个就满足。
这种题都一个套路。有点水的没意思了。如果没有搞过这种题,可以看我前面两篇blog…当然写的很水,主要可以我是想说可以做做那两题….
#include<iostream>
#include<cstdio>
#include<math.h>
#include<stdlib.h>
#include<vector>
#include<string.h>
#include<algorithm>
using namespace std;
typedef long long LL;
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define N 110
int ma[N][N];
int dfn[N];
int low[N];
int stap[N];
int vis[N];
int in[N];
int tp,p,cnt;
int kc[N];
int kr[N];
int n;
void tarjan(int u)
{
dfn[u]=low[u]=++tp;
stap[++p]=u;
vis[u]=1;
for(int i=1;i<=n;i++)
{
if(!ma[u][i])
continue;
if(!dfn[i])
{
tarjan(i);
low[u]=min(low[u],low[i]);
}
else if(vis[i])
{
low[u]=min(low[u],dfn[i]);
}
}
if(dfn[u]==low[u])
{
cnt++;
int temp;
while(1)
{
temp=stap[p];
vis[temp]=0;
in[temp]=cnt;
p--;
if(temp==u)
{
break;
}
}
}
}
void fun()
{
int pc,pr;
memset(kc,0,sizeof(kc));
memset(kr,0,sizeof(kr));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(ma[i][j]&&in[i]!=in[j])
{
kr[in[j]]++;
kc[in[i]]++;
}
}
}
pc=pr=0;
for(int i=1;i<=cnt;i++)
{
if(!kr[i])
{
pr++;
}
if(!kc[i])
{
pc++;
}
}
if(cnt==1)
{
printf("1
0
");
}
else
printf("%d
%d
",pr,max(pr,pc));
}
void init()
{
memset(ma,0,sizeof(ma));
memset(vis,0,sizeof(vis));
memset(dfn,0,sizeof(dfn));
}
int main()
{
while(~scanf("%d",&n))
{
int x;
init();
for(int i=1;i<=n;i++)
{
while(scanf("%d",&x)&&x)
ma[i][x]=1;
}
//找强连通分量
tp=p=cnt=0;
for(int i=1;i<=n;i++)
{
if(!dfn[i])
{
tarjan(i);
}
}
fun();
}
return 0;
}
/*
5
2 4 3 0
4 5 0
0
0
1 0
*/