• CEOI 2004 锯木场选址(DP + 斜率优化经典)


    题意:

    有 n 棵树,从山顶排到山脚,山脚下有个伐木场,你也可以在路上建两个伐木场,问将所有树砍下运到伐木场的最小费用,树只能往下运。

    题目链接:http://cojs.tk/cogs/problem/problem.php?pid=362

    思路:

    1. “用单调性优化动态规划”论文中有关于类似题目的论述,不过公式不太一样,本题需要自行推导;

    2. 代码中变量的定义说明:w[i] 表示 1~i 树木重量总和,x[i] 表示树木 i 距离树木 1 的距离;(推导过程中 w 为树重量,sumw 为1~i 树木重量总和);

    3. F(i) = w1 * (xj - x1) + w2 * (xj - x2) + ... + wj * (xj - xj)

            + wj+1 * (xi - xj+1) + wj+2 * (xi - xj+2) + ... + wi * (xi - xi

            + wi+1 * (xn+1 - xi+1) + wi+2 * (xn+1 - xi+2) + ... + wn * (xn+1 - xn);

    4. 化简可得:F(i) = delta + Y - a * X; 其中 a = xi, X = sumwj, Y = sumwj * xj

    5. 由公式可以看出当 i 固定时,delta, a 为常数,对于 X, Y 选定一点使 F(i) 最小即可。对于 X, Y 可以利用下凸函数的特性,用队列来维护,具体就不阐述了。

    #include <iostream>
    #include <algorithm>
    #include <stdio.h>
    using namespace std;
    
    const int MAXN = 20010;
    const int INFS = 0x7fffffff;
    
    int w[MAXN], d[MAXN], x[MAXN], deq[MAXN];
    
    inline double slope(int i, int j)
    {
        return 1.0 * (w[i] * x[i] - w[j] * x[j]) / (w[i] - w[j]);
    }
    
    int main()
    {
        freopen("two.in","r",stdin);
        freopen("two.out","w",stdout);
    
        int n;
        scanf("%d\n", &n);
    
        for (int i = 1; i <= n; ++i)
            scanf("%d %d", &w[i], &d[i]);
    
        w[0] = d[0] = x[1] = 0;
        int sum = 0;
        for (int i = 1; i <= n; ++i)
        {
            x[i+1] = x[i] + d[i];
            sum += x[i] * w[i], w[i] += w[i-1];
        }
    
        int ans = INFS;
        int s = 0, e = -1;
        for (int i = 1; i <= n; ++i)
        {
            while (s < e && slope(deq[e], deq[e-1]) >= slope(i, deq[e]))
                --e;
            deq[++e] = i;
            while (s < e && slope(deq[s], deq[s+1]) <= x[i])
                ++s;
    
            int delta = -sum + w[i] * x[i] + (w[n] - w[i]) * x[n+1];
            ans = min(ans, delta + w[deq[s]] * x[deq[s]] - x[i] * w[deq[s]]);
        }
        printf("%d\n", ans);
    
        fclose(stdin);
        fclose(stdout);
        return 0;
    }
  • 相关阅读:
    ZOJ 3795 Grouping
    ZOJ 3791 An Easy Game
    ZOJ 3790 Consecutive Blocks
    POJ 1451 T9
    POJ 1141 Brackets Sequence
    POJ 2411 Mondriaan's Dream
    POJ 2513 Colored Sticks
    Eclipse 快捷键大全
    C# lock关键字(多线程)
    C# 内部类
  • 原文地址:https://www.cnblogs.com/kedebug/p/2940423.html
Copyright © 2020-2023  润新知