时间限制:0.25s
空间限制:6M
题意:
给出n(n< 50000)个含双关键字(key,val)的节点,构造一颗树使该树,按key值是一颗二分查找树,按val值是一个小根堆.
Solution :
先按k值从小到大排序.
再从序列中找到最小的val值,将其作为根.再对它的左边和右边做同样的操作.左边最大的数做左儿子,右边做右儿子。递归即可.
这里要快速找到一个序列区间的最大值,用ST方法求RMQ就行了.
时间复杂度O(nlogN),空间复杂度O(n)
code:
#include <iostream> #include <cstdio> #include <algorithm> #include <functional> #include <vector> #include <utility> using namespace std; struct node { int key, val, ID; } p; struct answer { int fa, lson, rson; } ans[51000]; typedef pair<int , int > P; vector<node> f; P st[51000][20]; int n, x, y; bool cmp (node a, node b) { return a.key < b.key; } //ST RMQ void ST() { for (int i = n - 1; i >= 0 ; i--) for (int j = 1; i + (1 << j) <= n; j++) { if (st[i][j - 1].first < st[i + (1 << j - 1)][j - 1].first) st[i][j] = st[i][j - 1]; else st[i][j] = st[i + (1 << j - 1)][j - 1]; } } //得到区间最小值的位置 int getmin (int l, int r) { P tem; tem=st[l][0]; for (int k = 0; l + (1 << k) <= r; k++) { if (st[l][k].first < tem.first) tem = st[l][k]; if (st[r - (1 << k) + 1][k].first < tem.first) tem = st[r - (1 << k) + 1][k]; } return tem.second; } //递归建树 int make (int l, int r, int fa) { int k = getmin (l, r); int pos = f[k].ID; ans[pos].fa = fa; if (l >= r) return pos; if (l < k) ans[pos].lson = make (l, k - 1, pos); if (k < r) ans[pos].rson = make (k + 1, r, pos); return pos; } int main() { scanf("%d",&n); for (int i = 0; i < n; i++) { scanf("%d %d",&x,&y); p.key = x, p.val = y, p.ID = i + 1; f.push_back (p); } //按key值从小到大排序 sort (f.begin(), f.end(), cmp); for (int i = 0; i < (int) f.size(); i++) st[i][0] = make_pair (f[i].val, i); ST(); make (0, n - 1, 0); //一定有解直接输出 "YES" puts("YES "); for (int i = 1; i <= n; i++) printf("%d %d %d ",ans[i].fa,ans[i].lson,ans[i].rson); return 0; }