Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 5210 Accepted Submission(s): 3190
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence) a2, a3, ..., an, a1 (where m = 1) a3, a4, ..., an, a1, a2 (where m = 2) ... an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
Recommend
Ignatius.L
分析:线段树:单点更新,成段求和。模拟次序。
#include<cstdio> #include<cstring> #define lson l,m,rt<<1 #define rson m+1,r,rt<<1|1 int sum[1 << 14]; int x[5010]; inline int max(int a, int b) { return a > b ? a : b; } void pushup(int rt) { sum[rt] = (sum[rt << 1] + sum[rt << 1 | 1]); } void build(int l, int r, int rt) { if (l == r) { return; } int m = (l + r) >> 1; build(lson); build(rson); } void update(int p, int add, int l, int r, int rt) { if (l == r) { sum[rt] += add; return; } int m = (l + r) >> 1; if (p <= m) update(p, add, lson); else update(p, add, rson); pushup(rt); } int query(int L, int R, int l, int r, int rt) { if (L <= l && R >= r) { return sum[rt]; } int m = (l + r) >> 1; int ans = 0; if (L <= m) ans = (ans + query(L, R, lson)); if (R > m) ans = (ans + query(L, R, rson)); return ans; } int main() { int n, i, j, ans, min; while (scanf("%d", &n) != EOF) { memset(sum, 0, sizeof (sum)); ans = 0; build(0, n - 1, 1); for (i = 0; i < n; ++i) { scanf("%d", &x[i]); ans += query(x[i]+1, n - 1, 0, n - 1, 1); update(x[i], 1, 0, n - 1, 1); } min = ans; for (i = 0; i < n - 1; ++i) { ans = ans - x[i] - x[i] + n - 1; if (ans < min) min = ans; } printf("%d\n", min); } return 0; }