• 245H Queries for Number of Palindromes


    H. Queries for Number of Palindromes
    time limit per test
    5 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    You've got a string s = s1s2... s|s| of length |s|, consisting of lowercase English letters. There also are q queries, each query is described by two integers li, ri (1 ≤ li ≤ ri ≤ |s|). The answer to the query is the number of substrings of string s[li... ri], which are palindromes.

    String s[l... r] = slsl + 1... sr (1 ≤ l ≤ r ≤ |s|) is a substring of string s = s1s2... s|s|.

    String t is called a palindrome, if it reads the same from left to right and from right to left. Formally, if t = t1t2... t|t| = t|t|t|t| - 1... t1.

    Input

    The first line contains string s (1 ≤ |s| ≤ 5000). The second line contains a single integer q (1 ≤ q ≤ 106) — the number of queries. Next q lines contain the queries. The i-th of these lines contains two space-separated integers li, ri (1 ≤ li ≤ ri ≤ |s|) — the description of the i-th query.

    It is guaranteed that the given string consists only of lowercase English letters.

    Output

    Print q integers — the answers to the queries. Print the answers in the order, in which the queries are given in the input. Separate the printed numbers by whitespaces.

    Sample test(s)
    input
    caaaba
    5
    1 1
    1 4
    2 3
    4 6
    4 5
    output
    1
    7
    3
    4
    2
    Note

    Consider the fourth query in the first test case. String s[4... 6] = «aba». Its palindrome substrings are: «a», «b», «a», «aba».

      本题求任意子串包含的回文数,DP问题,状态转移方程:d[i][j]=d[i+1][j]+d[i][j-1]-d[i+1][j-1]+ispalindrome(i,j),其中ispalindrome(i,j)=ispalindrome(i+1,j-1)&&s[i]==s[j].

    #include<cstdio>
    #include<cstring>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    int dp[5010][5010];
    bool is[5010][5010];
    char s[5010];
    int main(){
        int i,len,q,a,b;
        scanf("%s",s);
        len=strlen(s);
        for(i=0;i<len;++i)
            dp[i][i]=is[i][i]=1;
        for(i=2;i<=len;++i){
            for(a=0;a<len+1-i;++a){
                b=a+i-1;
                if((a+1>b-1 || is[a+1][b-1]) && s[a]==s[b])
                    is[a][b]=1;
                dp[a][b]=dp[a+1][b]+dp[a][b-1]-dp[a+1][b-1]+is[a][b];
            }
        }
        scanf("%d",&q);
        while(q--){
            scanf("%d%d",&a,&b);
            printf("%d\n",dp[a-1][b-1]);
        }
        return 0;
    }
  • 相关阅读:
    欧拉函数、欧拉定理、费马小定理、拓展欧拉定理
    $CF 635 (Div 2)$
    $CF 634 (Div 3)$
    $CF 633 (Div 2)$
    $ACM$ 课第三次作业-搜索
    《信息安全数学基础一》第一章笔记
    接口测试工具与接口测试框架
    【python】基础知识小结
    【mongo】多个字段进行分组查询
    【mongo】去重操作
  • 原文地址:https://www.cnblogs.com/baidongtan/p/2781376.html
Copyright © 2020-2023  润新知