You've got a string s = s1s2... s|s| of length |s|, consisting of lowercase English letters. There also are q queries, each query is described by two integers li, ri (1 ≤ li ≤ ri ≤ |s|). The answer to the query is the number of substrings of string s[li... ri], which are palindromes.
String s[l... r] = slsl + 1... sr (1 ≤ l ≤ r ≤ |s|) is a substring of string s = s1s2... s|s|.
String t is called a palindrome, if it reads the same from left to right and from right to left. Formally, if t = t1t2... t|t| = t|t|t|t| - 1... t1.
The first line contains string s (1 ≤ |s| ≤ 5000). The second line contains a single integer q (1 ≤ q ≤ 106) — the number of queries. Next q lines contain the queries. The i-th of these lines contains two space-separated integers li, ri (1 ≤ li ≤ ri ≤ |s|) — the description of the i-th query.
It is guaranteed that the given string consists only of lowercase English letters.
Print q integers — the answers to the queries. Print the answers in the order, in which the queries are given in the input. Separate the printed numbers by whitespaces.
caaaba
5
1 1
1 4
2 3
4 6
4 5
1
7
3
4
2
Consider the fourth query in the first test case. String s[4... 6] = «aba». Its palindrome substrings are: «a», «b», «a», «aba».
本题求任意子串包含的回文数,DP问题,状态转移方程:d[i][j]=d[i+1][j]+d[i][j-1]-d[i+1][j-1]+ispalindrome(i,j),其中ispalindrome(i,j)=ispalindrome(i+1,j-1)&&s[i]==s[j].
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int dp[5010][5010]; bool is[5010][5010]; char s[5010]; int main(){ int i,len,q,a,b; scanf("%s",s); len=strlen(s); for(i=0;i<len;++i) dp[i][i]=is[i][i]=1; for(i=2;i<=len;++i){ for(a=0;a<len+1-i;++a){ b=a+i-1; if((a+1>b-1 || is[a+1][b-1]) && s[a]==s[b]) is[a][b]=1; dp[a][b]=dp[a+1][b]+dp[a][b-1]-dp[a+1][b-1]+is[a][b]; } } scanf("%d",&q); while(q--){ scanf("%d%d",&a,&b); printf("%d\n",dp[a-1][b-1]); } return 0; }