• 【bzoj2724】[Violet 6]蒲公英


    *题目描述:
    2724
    *输入:
    2724
    修正一下
    l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1
    *输出:
    2724
    *样例输入:
    6 3
    1 2 3 2 1 2
    1 5
    3 6
    1 5
    *样例输出:
    1
    2
    1
    *提示:
    2724
    修正下:
    n <= 40000, m <= 50000
    *题解:
    强制在线求区间众数。我们考虑将序列分块,对于每一个块,我们先维护0~当前块的每个数字的出现次数(这样的话我们就可以以O(1)的时间得到两个块之间某个数字的出现个数,类似于前缀和),这样做的空间和时间复杂度都是(sqrt(n) * n),然后我们再暴力预处理出块与块之间的答案,时间复杂度O(n * sqrt(n)),空间复杂度O(sqrt(n) * sqrt(n)) = O(n)。然后每个询问就和其他的分块题一样做就好了。
    *代码:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    
    #ifdef WIN32
        #define LL "%I64d"
    #else
        #define LL "%lld"
    #endif
    
    #ifdef CT
        #define debug(...) printf(__VA_ARGS__)
        #define setfile() 
    #else
        #define debug(...)
        #define filename ""
        #define setfile() freopen(filename".in", "r", stdin); freopen(filename".out", "w", stdout);
    #endif
    
    #define R register
    #define getc() (S == T && (T = (S = B) + fread(B, 1, 1 << 15, stdin), S == T) ? EOF : *S++)
    #define dmax(_a, _b) ((_a) > (_b) ? (_a) : (_b))
    #define dmin(_a, _b) ((_a) < (_b) ? (_a) : (_b))
    #define cmax(_a, _b) (_a < (_b) ? _a = (_b) : 0)
    #define cmin(_a, _b) (_a > (_b) ? _a = (_b) : 0)
    char B[1 << 15], *S = B, *T = B;
    inline int FastIn()
    {
        R char ch; R int cnt = 0; R bool minus = 0;
        while (ch = getc(), (ch < '0' || ch > '9') && ch != '-') ;
        ch == '-' ? minus = 1 : cnt = ch - '0';
        while (ch = getc(), ch >= '0' && ch <= '9') cnt = cnt * 10 + ch - '0';
        return minus ? -cnt : cnt;
    }
    #define maxn 40010
    int n, m, block, num, ans, anscnt;
    int hash[maxn], a[maxn], id[maxn], cnt[maxn], Ans[210][210], Cnt[210][maxn];
    int main()
    {
    //  setfile();
        n = FastIn(), m = FastIn();
        block = sqrt(n); num = n / block;
        R int tot = n;
        for (R int i = 1; i <= n; ++i) a[i] = hash[i] = FastIn(), id[i] = i / block;
        std::sort(hash + 1, hash + tot + 1);
        tot = std::unique(hash + 1, hash + tot + 1) - hash - 1;
        for (R int i = 1; i <= n; ++i)
            a[i] = std::lower_bound(hash + 1, hash + tot + 1, a[i]) - hash;
        // lisanhua
        for (R int i = 0; i <= num; ++i)
            for (R int j = 1; j < dmin((i + 1) * block, n + 1); ++j)
                ++Cnt[i][a[j]];
        for (R int i = 0; i < num; ++i)
        {
            anscnt = 0;
            for (R int j = i; j <= num; ++j)
            {
                for (R int k = j * block; k < dmin((j + 1) * block, n + 1); ++k)
                    ++cnt[a[k]] > anscnt || (cnt[a[k]] == anscnt && a[k] < ans)
                        ? anscnt = cnt[a[k]], ans = a[k]
                        : 0;
                Ans[i][j] = ans;
            }
            memset(cnt, 0, sizeof(cnt));
        }
        ans = 0;
        for (; m; --m)
        {
            R int ql = (FastIn() + ans - 1) % n + 1, qr = (FastIn() + ans - 1) % n + 1;
            anscnt = 0;
            if (ql > qr) std::swap(ql, qr);
            if (id[ql] == id[qr])
            {
                for (R int i = ql; i <= qr; ++i)
                    ++cnt[a[i]] > anscnt || (cnt[a[i]] == anscnt && a[i] < ans)
                        ? anscnt = cnt[a[i]], ans = a[i]
                        : 0;
                for (R int i = ql; i <= qr; ++i) --cnt[a[i]];
            }
            else
            {
                R int ls = id[ql] + 1, rs = id[qr] - 1;
                ans = Ans[ls][rs]; anscnt = Cnt[rs][ans] - Cnt[ls - 1][ans];
                for (R int i = ql; i < ls * block; ++i)
                {
                    R int tmp = ++cnt[a[i]] + Cnt[rs][a[i]] - Cnt[ls - 1][a[i]];
                    tmp > anscnt || (tmp == anscnt && a[i] < ans)
                        ? anscnt = tmp, ans = a[i]
                        : 0;
                }
                for (R int i = (rs + 1) * block; i <= qr; ++i)
                {
                    R int tmp = ++cnt[a[i]] + Cnt[rs][a[i]] - Cnt[ls - 1][a[i]];
                    tmp > anscnt || (tmp == anscnt && a[i] < ans)
                        ? anscnt = tmp, ans = a[i]
                        : 0;
                }
                for (R int i = ql; i < ls * block; ++i) --cnt[a[i]];
                for (R int i = (rs + 1) * block; i <= qr; ++i) --cnt[a[i]];
            }
            printf("%d
    ", ans = hash[ans]);
        }
        return 0;
    }
  • 相关阅读:
    Kruskal算法
    拓扑排序
    邻接表有向图
    邻接矩阵的有向图
    邻接表无向图
    邻接矩阵无向图
    斐波那契堆
    二项堆
    斜堆(待补充)
    项目中maven依赖无法自动下载
  • 原文地址:https://www.cnblogs.com/cocottt/p/5550953.html
Copyright © 2020-2023  润新知