• Prim算法


    一 普里姆算法介绍

    普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。 

    基本思想 
    对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

    二 普里姆算法图解

    以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

    初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空! 
    第1步:将顶点A加入到U中。 
        此时,U={A}。 
    第2步:将顶点B加入到U中。 
        上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。 
    第3步:将顶点F加入到U中。 
        上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。 
    第4步:将顶点E加入到U中。 
        上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。 
    第5步:将顶点D加入到U中。 
        上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。 
    第6步:将顶点C加入到U中。 
        上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。 
    第7步:将顶点G加入到U中。 
        上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。 

    此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G

    三 普里姆算法代码说明

    以"邻接矩阵"为例对普里姆算法进行说明

    1. 基本定义

    class MatrixUDG {
        #define MAX    100
        #define INF    (~(0x1<<31))        // 无穷大(即0X7FFFFFFF)
        private:
            char mVexs[MAX];    // 顶点集合
            int mVexNum;             // 顶点数
            int mEdgNum;             // 边数
            int mMatrix[MAX][MAX];   // 邻接矩阵
    
        public:
            // 创建图(自己输入数据)
            MatrixUDG();
            // 创建图(用已提供的矩阵)
            //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
            MatrixUDG(char vexs[], int vlen, int matrix[][9]);
            ~MatrixUDG();
    
            // 深度优先搜索遍历图
            void DFS();
            // 广度优先搜索(类似于树的层次遍历)
            void BFS();
            // prim最小生成树(从start开始生成最小生成树)
            void prim(int start);
            // 打印矩阵队列图
            void print();
    
        private:
            // 读取一个输入字符
            char readChar();
            // 返回ch在mMatrix矩阵中的位置
            int getPosition(char ch);
            // 返回顶点v的第一个邻接顶点的索引,失败则返回-1
            int firstVertex(int v);
            // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
            int nextVertex(int v, int w);
            // 深度优先搜索遍历图的递归实现
            void DFS(int i, int *visited);
    
    };

    MatrixUDG是邻接矩阵对应的结构体。 
    mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。

    2. prim算法

    /*
     * prim最小生成树
     *
     * 参数说明:
     *   start -- 从图中的第start个元素开始,生成最小树
     */
    void MatrixUDG::prim(int start)
    {
        int min,i,j,k,m,n,sum;
        int index=0;         // prim最小树的索引,即prims数组的索引
        char prims[MAX];     // prim最小树的结果数组
        int weights[MAX];    // 顶点间边的权值
    
        // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。
        prims[index++] = mVexs[start];
    
        // 初始化"顶点的权值数组",
        // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。
        for (i = 0; i < mVexNum; i++ )
            weights[i] = mMatrix[start][i];
        // 将第start个顶点的权值初始化为0。
        // 可以理解为"第start个顶点到它自身的距离为0"。
        weights[start] = 0;
    
        for (i = 0; i < mVexNum; i++)
        {
            // 由于从start开始的,因此不需要再对第start个顶点进行处理。
            if(start == i)
                continue;
    
            j = 0;
            k = 0;
            min = INF;
            // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。
            while (j < mVexNum)
            {
                // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。
                if (weights[j] != 0 && weights[j] < min)
                {
                    min = weights[j];
                    k = j;
                }
                j++;
            }
    
            // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。
            // 将第k个顶点加入到最小生成树的结果数组中
            prims[index++] = mVexs[k];
            // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。
            weights[k] = 0;
            // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。
            for (j = 0 ; j < mVexNum; j++)
            {
                // 当第j个节点没有被处理,并且需要更新时才被更新。
                if (weights[j] != 0 && mMatrix[k][j] < weights[j])
                    weights[j] = mMatrix[k][j];
            }
        }
    
        // 计算最小生成树的权值
        sum = 0;
        for (i = 1; i < index; i++)
        {
            min = INF;
            // 获取prims[i]在mMatrix中的位置
            n = getPosition(prims[i]);
            // 在vexs[0...i]中,找出到j的权值最小的顶点。
            for (j = 0; j < i; j++)
            {
                m = getPosition(prims[j]);
                if (mMatrix[m][n]<min)
                    min = mMatrix[m][n];
            }
            sum += min;
        }
        // 打印最小生成树
        cout << "PRIM(" << mVexs[start] << ")=" << sum << ": ";
        for (i = 0; i < index; i++)
            cout << prims[i] << " ";
        cout << endl;
    }

    完整代码:
    邻接矩阵

    邻接表

    本文来自http://www.cnblogs.com/skywang12345/p/3711507.html

  • 相关阅读:
    SQL 学习笔记(一)联表查询
    .NET (OleDb) Access 各个版本的连接字符口串
    加油站
    程序员的编程套路
    落单的数
    读《怎样解题》
    使用org-mode写cnblogs博客
    Emacs 25.1 error solved: url-http-create-request: Multibyte text in HTTP request
    二进制表示小数
    快速幂
  • 原文地址:https://www.cnblogs.com/msymm/p/9758198.html
Copyright © 2020-2023  润新知