一 普里姆算法介绍
普里姆(Prim)算法,是用来求加权连通图的最小生成树的算法。
基本思想
对于图G而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。 从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。
二 普里姆算法图解
以上图G4为例,来对普里姆进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。
初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T都是空!
第1步:将顶点A加入到U中。
此时,U={A}。
第2步:将顶点B加入到U中。
上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中;此时,U={A,B}。
第3步:将顶点F加入到U中。
上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中;此时,U={A,B,F}。
第4步:将顶点E加入到U中。
上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中;此时,U={A,B,F,E}。
第5步:将顶点D加入到U中。
上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,边(E,D)的权值最小。将顶点D添加到U中;此时,U={A,B,F,E,D}。
第6步:将顶点C加入到U中。
上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中;此时,U={A,B,F,E,D,C}。
第7步:将顶点G加入到U中。
上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中;此时,U=V。
此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。
三 普里姆算法代码说明
以"邻接矩阵"为例对普里姆算法进行说明
1. 基本定义
class MatrixUDG { #define MAX 100 #define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF) private: char mVexs[MAX]; // 顶点集合 int mVexNum; // 顶点数 int mEdgNum; // 边数 int mMatrix[MAX][MAX]; // 邻接矩阵 public: // 创建图(自己输入数据) MatrixUDG(); // 创建图(用已提供的矩阵) //MatrixUDG(char vexs[], int vlen, char edges[][2], int elen); MatrixUDG(char vexs[], int vlen, int matrix[][9]); ~MatrixUDG(); // 深度优先搜索遍历图 void DFS(); // 广度优先搜索(类似于树的层次遍历) void BFS(); // prim最小生成树(从start开始生成最小生成树) void prim(int start); // 打印矩阵队列图 void print(); private: // 读取一个输入字符 char readChar(); // 返回ch在mMatrix矩阵中的位置 int getPosition(char ch); // 返回顶点v的第一个邻接顶点的索引,失败则返回-1 int firstVertex(int v); // 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1 int nextVertex(int v, int w); // 深度优先搜索遍历图的递归实现 void DFS(int i, int *visited); };
MatrixUDG是邻接矩阵对应的结构体。
mVexs用于保存顶点,mVexNum是顶点数,mEdgNum是边数;mMatrix则是用于保存矩阵信息的二维数组。例如,mMatrix[i][j]=1,则表示"顶点i(即mVexs[i])"和"顶点j(即mVexs[j])"是邻接点;mMatrix[i][j]=0,则表示它们不是邻接点。
2. prim算法
/* * prim最小生成树 * * 参数说明: * start -- 从图中的第start个元素开始,生成最小树 */ void MatrixUDG::prim(int start) { int min,i,j,k,m,n,sum; int index=0; // prim最小树的索引,即prims数组的索引 char prims[MAX]; // prim最小树的结果数组 int weights[MAX]; // 顶点间边的权值 // prim最小生成树中第一个数是"图中第start个顶点",因为是从start开始的。 prims[index++] = mVexs[start]; // 初始化"顶点的权值数组", // 将每个顶点的权值初始化为"第start个顶点"到"该顶点"的权值。 for (i = 0; i < mVexNum; i++ ) weights[i] = mMatrix[start][i]; // 将第start个顶点的权值初始化为0。 // 可以理解为"第start个顶点到它自身的距离为0"。 weights[start] = 0; for (i = 0; i < mVexNum; i++) { // 由于从start开始的,因此不需要再对第start个顶点进行处理。 if(start == i) continue; j = 0; k = 0; min = INF; // 在未被加入到最小生成树的顶点中,找出权值最小的顶点。 while (j < mVexNum) { // 若weights[j]=0,意味着"第j个节点已经被排序过"(或者说已经加入了最小生成树中)。 if (weights[j] != 0 && weights[j] < min) { min = weights[j]; k = j; } j++; } // 经过上面的处理后,在未被加入到最小生成树的顶点中,权值最小的顶点是第k个顶点。 // 将第k个顶点加入到最小生成树的结果数组中 prims[index++] = mVexs[k]; // 将"第k个顶点的权值"标记为0,意味着第k个顶点已经排序过了(或者说已经加入了最小树结果中)。 weights[k] = 0; // 当第k个顶点被加入到最小生成树的结果数组中之后,更新其它顶点的权值。 for (j = 0 ; j < mVexNum; j++) { // 当第j个节点没有被处理,并且需要更新时才被更新。 if (weights[j] != 0 && mMatrix[k][j] < weights[j]) weights[j] = mMatrix[k][j]; } } // 计算最小生成树的权值 sum = 0; for (i = 1; i < index; i++) { min = INF; // 获取prims[i]在mMatrix中的位置 n = getPosition(prims[i]); // 在vexs[0...i]中,找出到j的权值最小的顶点。 for (j = 0; j < i; j++) { m = getPosition(prims[j]); if (mMatrix[m][n]<min) min = mMatrix[m][n]; } sum += min; } // 打印最小生成树 cout << "PRIM(" << mVexs[start] << ")=" << sum << ": "; for (i = 0; i < index; i++) cout << prims[i] << " "; cout << endl; }
完整代码:
邻接矩阵
邻接表
本文来自http://www.cnblogs.com/skywang12345/p/3711507.html