• trie


     Trie(retrieval) is an order tree data structure that is used to store “string”.

     Unlike normal tree, trie does not store data in its nodes,node position indicates what data the node associates with.

     below is what a trie looks like holding string: ab, ac,b,cd,cde,d. 

    A simple definition of a trie node:

    struct node
    {
     Bool isWord;//is current node the last node of a word?
     node*child[26];
    };

    As you can see in the graph above, each edge from a node denotes a ‘letter’ (the relative position where the edge comes from indicates which letter it represents),
    When traversing from root to some of its descendant with a dfs (depth first searching), we got a ‘string’.

    Note that every node has unique parent, so there is always a unique path from child to the root. 

    Initially, trie has a root node only. Then we insert string into it:

    void insert(char*pWord)
    {
     if(!pWord || *pWord == 0)
         return ;
     char* pw = pWord;
     char c = *pw++;
     node *p = root;
     while( c )
     {
       if(p->child[c] == null)
       {
          node*q = new node();
          p->child[c] = q;
       }
    
       P = p->child[c];
       c = *pw++;
     }
    
     p->isWord = true;
    }

    The ‘isWord’ in the node struct indicates whether path from here to the root represent a string.

    This variable is of help when we need to insert strings like these: “abc”, “abcde”, whose path in the trie completely overlaps each other. 

    When searching for a string, we traverse each node like this:

    bool SearchWord(const char*pWord)
    {
      if(!pWord || *pWord == 0)
         return false;
      char*pw = pWord;
      node*p = root;
      char c = *pw++;
      while( c )
      {
         if(p->[c] == null)
           return false;
    
          p = p->[c];
          c = *pw++;
       }
    
       return p->isWord;
    }

     Above is a simple version of implementation of a trie.

     All I want to show is the idea how a trie helps searching for a string in a dictionary in an efficient way.

     Searching complexity is linear time of the length of the string being search, irrelevant to the size of the string set the trie is holding.

     Of course, setting up the trie will still cost a little, which is always an evitable operation.

  • 相关阅读:
    Javadoc注释的用法
    Java 和 Android系统环境变量设置
    [转载]Android开发新浪微博客户端 完整攻略 [新手必读]
    eclipse中Android程序字符编码不统一的解决方案
    用word2007写blog时表格的显示效果
    解决Vista中的文件关联图标问题。
    用word2007在博客园发布带图片的blog
    在c++中使用gotoxy
    动态多线程任务管理
    几个视频切割工具
  • 原文地址:https://www.cnblogs.com/catch/p/2880254.html
Copyright © 2020-2023  润新知