• Bubble Cup 12


    题意略,题解生成函数练习题,1+(q-ai)x卷积即可,线段树优化(类似分治思想)

    //#pragma GCC optimize(2)
    //#pragma GCC optimize(3)
    //#pragma GCC optimize(4)
    //#pragma GCC optimize("unroll-loops")
    //#pragma comment(linker, "/stack:200000000")
    //#pragma GCC optimize("Ofast,no-stack-protector")
    //#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
    #include<bits/stdc++.h>
    //#include <bits/extc++.h>
    #define fi first
    #define se second
    #define db double
    #define mp make_pair
    #define pb push_back
    #define mt make_tuple
    //#define pi acos(-1.0)
    #define ll long long
    #define vi vector<int>
    #define mod 998244353
    #define ld long double
    //#define C 0.5772156649
    #define ls l,m,rt<<1
    #define rs m+1,r,rt<<1|1
    #define pll pair<ll,ll>
    #define pil pair<int,ll>
    #define pli pair<ll,int>
    #define pii pair<int,int>
    #define ull unsigned long long
    #define bpc __builtin_popcount
    #define base 1000000000000000000ll
    #define fin freopen("a.txt","r",stdin)
    #define fout freopen("a.txt","w",stdout)
    #define fio ios::sync_with_stdio(false);cin.tie(0)
    #define mr mt19937 rng(chrono::steady_clock::now().time_since_epoch().count())
    inline ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
    inline void sub(ll &a,ll b){a-=b;if(a<0)a+=mod;}
    inline void add(ll &a,ll b){a+=b;if(a>=mod)a-=mod;}
    template<typename T>inline T const& MAX(T const &a,T const &b){return a>b?a:b;}
    template<typename T>inline T const& MIN(T const &a,T const &b){return a<b?a:b;}
    inline ll mul(ll a,ll b,ll c){return (a*b-(ll)((ld)a*b/c)*c+c)%c;}
    inline ll qp(ll a,ll b){ll ans=1;while(b){if(b&1)ans=ans*a%mod;a=a*a%mod,b>>=1;}return ans;}
    inline ll qp(ll a,ll b,ll c){ll ans=1;while(b){if(b&1)ans=mul(ans,a,c);a=mul(a,a,c),b>>=1;}return ans;}
    
    using namespace std;
    //using namespace __gnu_pbds;
    
    const ld pi = acos(-1);
    const ull ba=233;
    const db eps=1e-5;
    const ll INF=0x3f3f3f3f3f3f3f3f;
    const int N=200000+10,maxn=2000000+10,inf=0x3f3f3f3f;
    
    ll x[N<<3],y[N<<3];
    int rev[N<<3];
    void getrev(int bit)
    {
        for(int i=0;i<(1<<bit);i++)
            rev[i]=(rev[i>>1]>>1) | ((i&1)<<(bit-1));
    }
    void ntt(ll *a,int n,int dft)
    {
        for(int i=0;i<n;i++)
            if(i<rev[i])
                swap(a[i],a[rev[i]]);
        for(int step=1;step<n;step<<=1)
        {
            ll wn=qp(3,(mod-1)/(step*2));
            if(dft==-1)wn=qp(wn,mod-2);
            for(int j=0;j<n;j+=step<<1)
            {
                ll wnk=1;
                for(int k=j;k<j+step;k++)
                {
                    ll x=a[k];
                    ll y=wnk*a[k+step]%mod;
                    a[k]=(x+y)%mod;a[k+step]=(x-y+mod)%mod;
                    wnk=wnk*wn%mod;
                }
            }
        }
        if(dft==-1)
        {
            ll inv=qp(n,mod-2);
            for(int i=0;i<n;i++)a[i]=a[i]*inv%mod;
        }
    }
    vi v[N<<2];
    int a[N],b[N];
    void solve(int l,int r,int rt)
    {
        if(l==r)
        {
            v[rt].clear();
            v[rt].pb(1);v[rt].pb(b[l]);
    //        printf("%d
    ",b[l]);
            return ;
        }
        int m=(l+r)>>1;
        solve(ls);solve(rs);
        int p=v[rt<<1].size(),q=v[rt<<1|1].size();
        int sz=0;
        while((1<<sz)<=p+q)sz++;
        getrev(sz);
        int len=(1<<sz);
    //    printf("%d
    ",len);
        for(int i=0;i<len;i++)
        {
            x[i]=(i<p?v[rt<<1][i]:0);
            y[i]=(i<q?v[rt<<1|1][i]:0);
        }
        ntt(x,len,1);ntt(y,len,1);
        for(int i=0;i<len;i++)x[i]=x[i]*y[i]%mod;
        ntt(x,len,-1);
        v[rt].clear();
        for(int i=0;i<len;i++)v[rt].pb(x[i]);
        while(v[rt].size()&&v[rt].back()==0)v[rt].pop_back();
    }
    int main()
    {
    //    fin;
        int n,k;scanf("%d%d",&n,&k);
        for(int i=1;i<=n;i++)scanf("%d",&a[i]),a[i]%=mod;
        int q;scanf("%d",&q);
        while(q--)
        {
            int op,q,x,y,z;scanf("%d%d%d%d",&op,&q,&x,&y);
            if(op==1)
            {
                q%=mod,y%=mod;
                for(int i=1;i<=n;i++)
                {
                    b[i]=(i==x?q-y:q-a[i]);
                    if(b[i]<0)b[i]+=mod;
                }
            }
            else
            {
                scanf("%d",&z);
                q%=mod,z%=mod;
                for(int i=1;i<=n;i++)
                {
                    if(x<=i&&i<=y)b[i]=((q-a[i]-z)%mod+mod)%mod;
                    else b[i]=(q-a[i]+mod)%mod;
                }
            }
            solve(1,n,1);
            printf("%d
    ",v[1][k]);
        }
        return 0;
    }
    /********************
    
    ********************/
    
  • 相关阅读:
    中国剩余定理(crt)和扩展中国剩余定理(excrt)
    数论集合
    gcd(欧几里得算法)与exgcd(扩展欧几里得算法)
    青蛙的约会
    【杭电多校第七场】A + B = C
    【XDOJ】小W的塔防
    备战省赛组队训练赛第十四场(UPC)
    2019.4.27浙江省赛
    备战省赛组队训练赛第六场(UPC)
    备战省赛组队训练赛第七场(UPC)
  • 原文地址:https://www.cnblogs.com/acjiumeng/p/11536892.html
Copyright © 2020-2023  润新知