• Codeforces 895B. XK Segments


    While Vasya finished eating his piece of pizza, the lesson has already started. For being late for the lesson, the teacher suggested Vasya to solve one interesting problem. Vasya has an array a and integer x. He should find the number of different ordered pairs of indexes (i, j) such that ai ≤ aj and there are exactly k integers y such that ai ≤ y ≤ aj and y is divisible by x.

    In this problem it is meant that pair (i, j) is equal to (j, i) only if i is equal to j. For example pair (1, 2) is not the same as (2, 1).

    Input

    The first line contains 3 integers n, x, k (1 ≤ n ≤ 105, 1 ≤ x ≤ 109, 0 ≤ k ≤ 109), where n is the size of the array a and x and k are numbers from the statement.

    The second line contains n integers ai (1 ≤ ai ≤ 109) — the elements of the array a.

    Output

    Print one integer — the answer to the problem.

    排序后用二分查找解决

    对于每个a[i],可以根据他的值,算出满足a[i]~a[j]中有k个x的倍数的a[j]的范围,然后二分查找数组求出对数

    #include<bits/stdc++.h>  
    using namespace std;
    typedef long long LL;   
    #define SIZE 100005
    
    LL n,k,x,res = 0;
    LL a[SIZE];
    int main(){  
        // freopen("test.in","r",stdin);
        ios::sync_with_stdio(false);
        cin >> n >> x >> k;
        for (int i=0;i<n;i++){
            cin >> a[i];
        }
        sort(a,a+n);
    
        // now = t * x,up = (t+k)*x-1,down = (t+k-1)*x 
        // now = t * x,up = t*x - 1,down = (t-1)*x
        // now = t * x + b up = (t+k+1)*x - 1,down = (t+k)*x
        for (int i=0;i<n;i++){
            LL now = a[i],up,down;
            if (now % x == 0){
                if (k == 0) continue;
                up = (now/x+k)*x - 1; down = max((now/x+k-1)*x,a[i]);
            }
            else {
                up = (now/x+k+1)*x - 1; down = max((now/x+k)*x,a[i]);
            }
            // cout << "[" << down << "," << up << "]" << endl;
            LL rindex = min((LL)(upper_bound(a+i,a+n,up) - a),n-1);
            if (a[rindex] > up) rindex --;
            LL lindex = lower_bound(a,a+n,down) - a;
            // get [lindex,rindex]
            res += rindex - lindex + 1;
            // cout << lindex << " " << rindex << " ";
            // cout << res << endl;
        }
    
    
        cout << res;
    
        return 0;   
    }  
    View Code
  • 相关阅读:
    BZOJ1036 [ZJOI2008]树的统计Count
    3224: Tyvj 1728 普通平衡树
    BZOJ 3343教主的魔法
    BZOJ 2002[Hnoi2010]Bounce 弹飞绵羊
    BZOJ1503 [NOI2004]郁闷的出纳员
    BZOJ1588 [HNOI2002]营业额统计
    带有上下界的网络流
    堆优化 dijkstra +路径输出
    luogu P3388 【模板】割点(割顶)
    Tarjan 算法求无向图的割顶和桥
  • 原文地址:https://www.cnblogs.com/ToTOrz/p/7905844.html
Copyright © 2020-2023  润新知