D. Iterated Linear Function
time limit per test
1 secondmemory limit per test
256 megabytesinput
standard inputoutput
standard outputConsider a linear function f(x) = Ax + B. Let's define g(0)(x) = x and g(n)(x) = f(g(n - 1)(x)) for n > 0. For the given integer values A, B, n and x find the value of g(n)(x) modulo 109 + 7.
Input
The only line contains four integers A, B, n and x (1 ≤ A, B, x ≤ 109, 1 ≤ n ≤ 1018) — the parameters from the problem statement.
Note that the given value n can be too large, so you should use 64-bit integer type to store it. In C++ you can use thelong long integer type and in Java you can use long integer type.
Output
Print the only integer s — the value g(n)(x) modulo 109 + 7.
Examples
input
3 4 1 1
output
7
input
3 4 2 1
output
25
input
3 4 3 1
output
79
裸题一道。最近玩SPFA有点过头……矩阵快速幂做了有一段时间了,构造矩阵还想了几分钟,我也是醉了……。好像也可以用普通快速幂,把r=r*bas%mod改成r=(r*bas+b)%mod即可,一开始全部设为int各种苦逼WA……千万记得最后输出的答案再模mod,这里又苦逼WA一发……
代码:
#include<iostream> #include<algorithm> #include<cstdlib> #include<sstream> #include<cstring> #include<cstdio> #include<string> #include<deque> #include<stack> #include<cmath> #include<queue> #include<set> #include<map> #define INF 0x3f3f3f3f #define MM(x) memset(x,0,sizeof(x)) #define MMINF(x) memset(x,INF,sizeof(x)) using namespace std; typedef long long LL; struct mat { LL pos[2][2]; mat(){MM(pos);} }; LL a,b,n,x; const int mod=1e9+7; inline mat operator*(const mat &a,const mat &b) { mat c; for (int i=0; i<2; i++) { for (int j=0; j<2; j++) { for (int k=0; k<2; k++) { c.pos[i][j]+=(a.pos[i][k]*b.pos[k][j])%mod; } } } return c; } inline mat operator^(mat a,LL b) { mat bas=a,r; for (int i=0; i<2; i++) r.pos[i][i]=1; while (b!=0) { if(b&1) r=r*bas; bas=bas*bas; b>>=1; } return r; } int main(void) { while (cin>>a>>b>>n>>x) { mat one,t; one.pos[0][0]=x; one.pos[1][0]=1; t.pos[0][0]=a; t.pos[0][1]=b; t.pos[1][1]=1; t=t^(n); one=t*one; cout<<one.pos[0][0]%mod<<endl; } return 0; }