• GCD BZOJ2818 [省队互测] 数学


    题目描述

    给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

    输入输出格式

    输入格式:

    一个整数N

    输出格式:

    答案

    输入输出样例

    输入样例#1: 复制
    4
    输出样例#1: 复制
    4

    说明

    对于样例(2,2),(2,4),(3,3),(4,2)

    1<=N<=10^7

    来源:bzoj2818

    本题数据为洛谷自造数据,使用CYaRon耗时5分钟完成数据制作。

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<time.h>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 2000005
    #define inf 0x7fffffff
    //#define INF 1e18
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    #define mclr(x,a) memset((x),a,sizeof(x))
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-5
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    //const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    
    inline int rd() {
    	int x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    int sqr(int x) { return x * x; }
    
    
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    bool vis[10000002];
    int phi[10000002];
    ll sum[10000002 >> 1];
    int pri[10000002];
    int tot;
    int N;
    void init() {
    	phi[1] = 1;
    	for (int i = 2; i <= 10000000; i++) {
    		if (!vis[i]) {
    			pri[++tot] = i; phi[i] = i - 1;
    		}
    		for (int j = 1; j <= tot && i*pri[j] <= 10000000; j++) {
    			vis[i*pri[j]] = true;
    			phi[i*pri[j]] = phi[i] * phi[pri[j]];
    			if (i%pri[j] == 0) {
    				phi[i*pri[j]] = phi[i] * pri[j];
    				break;
    			}
    		}
    	}
    }
    
    int main()
    {
    	//	ios::sync_with_stdio(0);
    	N = rd();
    	init();
    	for (int i = 1; i <= 10000000 / 2; i++)sum[i] = 1ll*sum[i - 1] + 1ll*phi[i];
    	ll ans = 0;
    	for (int i = 1; i <= tot; i++) {
    		if (pri[i] > N)break;
    		ans += 1ll * 2 * sum[N / pri[i]] - 1;
    	}
    	cout << (ll)ans << endl;
    	return 0;
    }
    
  • 相关阅读:
    面试题25二叉树中和为某一值得路径+递归函数详细解析
    [Codeforces 1199D]Welfare State(线段树)
    [Codeforces 1199C]MP3(离散化+二分答案)
    [Codeforces 1191D] Tokitsukaze, CSL and Stone Game(博弈论)
    [Codeforces 639F] Bear and Chemistry (Tarjan+虚树)(有详细注释)
    [HDU5807] [BestCoder Round #86 1004] Keep In Touch (DP)
    [Codeforces712D] Memory and Scores(DP+前缀和优化)(不用单调队列)
    [Codeforces722E] Research Rover (dp+组合数学)
    [POJ3612] Telephone Wire(暴力dp+剪枝)
    [Codeforces600E] Lomsat gelral(树上启发式合并)
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10363171.html
Copyright © 2020-2023  润新知