1 模块初识
- Python的强大之处在于他有非常丰富和强大的标准库和第三方库,几乎你想实现的任何功能都有相应的Python库支持,以后的课程中会深入讲解常用到的各种库,现在,我们先来象征性的学2个简单的。
sys模块
import sys
print(sys.argv)
输出结果
['D:/python project/基础课程/Day2_2016-7-30/博客测试专用.py']-
打印出这个Python文件的路径
os模块
import os
os.system("df -h") #调用系统命令
os模块可以调用Linux命令
2 .pyc是个什么鬼?
2.1 Python是一门解释型语言?
我初学Python时,听到的关于Python的第一句话就是,Python是一门解释性语言,我就这样一直相信下去,直到发现了.pyc文件的存在。如果是解释型语言,那么生成的.pyc文件是什么呢?c应该是compiled的缩写才对啊!
为了防止其他学习Python的人也被这句话误解,那么我们就在文中来澄清下这个问题,并且把一些基础概念给理清。
2.2 解释型语言和编译型语言
计算机是不能够识别高级语言的,所以当我们运行一个高级语言程序的时候,就需要一个“翻译机”来从事把高级语言转变成计算机能读懂的机器语言的过程。这个过程分成两类,第一种是编译,第二种是解释。
编译型语言在程序执行之前,先会通过编译器对程序执行一个编译的过程,把程序转变成机器语言。运行时就不需要翻译,而直接执行就可以了。最典型的例子就是C语言。
解释型语言就没有这个编译的过程,而是在程序运行的时候,通过解释器对程序逐行作出解释,然后直接运行,最典型的例子是Ruby。
通过以上的例子,我们可以来总结一下解释型语言和编译型语言的优缺点,因为编译型语言在程序运行之前就已经对程序做出了“翻译”,所以在运行时就少掉了“翻译”的过程,所以效率比较高。但是我们也不能一概而论,一些解释型语言也可以通过解释器的优化来在对程序做出翻译时对整个程序做出优化,从而在效率上超过编译型语言。
此外,随着Java等基于虚拟机的语言的兴起,我们又不能把语言纯粹地分成解释型和编译型这两种。
用Java来举例,Java首先是通过编译器编译成字节码文件,然后在运行时通过解释器给解释成机器文件。所以我们说Java是一种先编译后解释的语言。
2.3 Python到底是什么
其实Python和Java/C#一样,也是一门基于虚拟机的语言,我们先来从表面上简单地了解一下Python程序的运行过程吧。
当我们在命令行中输入python hello.py时,其实是激活了Python的“解释器”,告诉“解释器”:你要开始工作了。可是在“解释”之前,其实执行的第一项工作和Java一样,是编译。
熟悉Java的同学可以想一下我们在命令行中如何执行一个Java的程序:
javac hello.java
java hello
只是我们在用Eclipse之类的IDE时,将这两部给融合成了一部而已。其实Python也一样,当我们执行python hello.py时,他也一样执行了这么一个过程,所以我们应该这样来描述Python,Python是一门先编译后解释的语言。
2.4 简述Python的运行过程
在说这个问题之前,我们先来说两个概念,PyCodeObject和pyc文件。
我们在硬盘上看到的pyc自然不必多说,而其实PyCodeObject则是Python编译器真正编译成的结果。我们先简单知道就可以了,继续向下看。
当python程序运行时,编译的结果则是保存在位于内存中的PyCodeObject中,当Python程序运行结束时,Python解释器则将PyCodeObject写回到pyc文件中。
当python程序第二次运行时,首先程序会在硬盘中寻找pyc文件,如果找到,则直接载入,否则就重复上面的过程。
所以我们应该这样来定位PyCodeObject和pyc文件,我们说pyc文件其实是PyCodeObject的一种持久化保存方式。
3 数据类型初识
3.1 数字
2 是一个整数的例子。
长整数 不过是大一些的整数。
3.23和52.3E-4是浮点数的例子。E标记表示10的幂。在这里,52.3E-4表示52.3 * 10-4。
(-5+4j)和(2.3-4.6j)是复数的例子,其中-5,4为实数,j为虚数,数学中表示复数是什么?。
int(整型)
在32位机器上,整数的位数为32位,取值范围为-231~231-1,即-2147483648~ 2147483647
在64位系统上,整数的位数为64位,取值范围为-263~263-1,即-9223372036854775808~9223372036854775807
long(长整型)
跟C语言不同,Python的长整数没有指定位宽,即:Python没有限制长整数数值的大小,但实际上由于机器内存有限,我们使用的长整数数值不可能无限大。
注意,自从Python2.2起,如果整数发生溢出,Python会自动将整数数据转换为长整数,所以如今在长整数数据后面不加字母L也不会导致严重后果了。
float(浮点型)
浮点数用来处理实数,即带有小数的数字。类似于C语言中的double类型,占8个字节(64位),其中52位表示底,11位表示指数,剩下的一位表示符号。
complex(复数)
复数由实数部分和虚数部分组成,一般形式为x+yj,其中的x是复数的实数部分,y是复数的虚数部分,这里的x和y都是实数。
注:Python中存在小数字池:-5 ~ 257
3.2 布尔值
真或假
1 或 0
4 字符串
"hello world"
万恶的字符串拼接:
python中的字符串在C语言中体现为是一个字符数组,每次创建字符串时候需要在内存中开辟一块连续的空,并且一旦需要修改字符串的话,就需要再次开辟空间,万恶的+号每出现一次就会在内从中重新开辟一块空间。
name = "wu"
print("i am %s" % name)
字符串是----%s 整数------- %d; 浮点数-----%f
4.1 字符串中字符大小写的变换:
S.lower() #小写
S.upper() #大写
S.swapcase() #大小写互换
S.capitalize() #首字母大写
String.capwords(S)
#这是模块中的方法。它把S用split()函数分开,然后用capitalize()把首字母变成大写,最后用join()合并到一起
S.title() #只有首字母大写,其余为小写,模块中没有这个方法
字符串在输出时的对齐:
S.ljust(width,[fillchar])
#输出width个字符,S左对齐,不足部分用fillchar填充,默认的为空格。
S.rjust(width,[fillchar]) #右对齐
S.center(width, [fillchar]) #中间对齐
S.zfill(width) #把S变成width长,并在右对齐,不足部分用0补足
字符串中的搜索和替换:
S.find(substr, [start, [end]])
#返回S中出现substr的第一个字母的标号,如果S中没有substr则返回-1。start和end作用就相当于在S[start:end]中搜索
S.index(substr, [start, [end]])
#与find()相同,只是在S中没有substr时,会返回一个运行时错误
S.rfind(substr, [start, [end]])
#返回S中最后出现的substr的第一个字母的标号,如果S中没有substr则返回-1,也就是说从右边算起的第一次出现的substr的首字母标号
S.rindex(substr, [start, [end]])
S.count(substr, [start, [end]]) #计算substr在S中出现的次数
S.replace(oldstr, newstr, [count])
#把S中的oldstar替换为newstr,count为替换次数。这是替换的通用形式,还有一些函数进行特殊字符的替换
S.strip([chars])
#把S中前后chars中有的字符全部去掉,可以理解为把S前后chars替换为None
S.lstrip([chars])
S.rstrip([chars])
S.expandtabs([tabsize])
#把S中的tab字符替换没空格,每个tab替换为tabsize个空格,默认是8个
字符串的分割和组合:
S.split([sep, [maxsplit]])
#以sep为分隔符,把S分成一个list。maxsplit表示分割的次数。默认的分割符为空白字符
S.rsplit([sep, [maxsplit]])
S.splitlines([keepends])
#把S按照行分割符分为一个list,keepends是一个bool值,如果为真每行后而会保留行分割符。
S.join(seq) #把seq代表的序列──字符串序列,用S连接起来
字符串的mapping,这一功能包含两个函数:
String.maketrans(from, to)
#返回一个256个字符组成的翻译表,其中from中的字符被一一对应地转换成to,所以from和to必须是等长的。
S.translate(table[,deletechars])
# 使用上面的函数产后的翻译表,把S进行翻译,并把deletechars中有的字符删掉。需要注意的是,如果S为unicode字符串,那么就不支持 deletechars参数,可以使用把某个字符翻译为None的方式实现相同的功能。此外还可以使用codecs模块的功能来创建更加功能强大的翻译表。
字符串还有一对编码和解码的函数:
S.encode([encoding,[errors]])
# 其中encoding可以有多种值,比如gb2312 gbk gb18030 bz2 zlib big5 bzse64等都支持。errors默认值为"strict",意思是UnicodeError。可能的值还有'ignore', 'replace', 'xmlcharrefreplace', 'backslashreplace' 和所有的通过codecs.register_error注册的值。这一部分内容涉及codecs模块,不是特明白
S.decode([encoding,[errors]])
字符串的测试函数,这一类函数在string模块中没有,这些函数返回的都是bool值:
S.startwith(prefix[,start[,end]])
#是否以prefix开头
S.endwith(suffix[,start[,end]])
#以suffix结尾
S.isalnum()
#是否全是字母和数字,并至少有一个字符
S.isalpha() #是否全是字母,并至少有一个字符
S.isdigit() #是否全是数字,并至少有一个字符
S.isspace() #是否全是空白字符,并至少有一个字符
S.islower() #S中的字母是否全是小写
S.isupper() #S中的字母是否便是大写
S.istitle() #S是否是首字母大写的
字符串类型转换函数,这几个函数只在string模块中有:
string.atoi(s[,base])
#base默认为10,如果为0,那么s就可以是012或0x23这种形式的字符串,如果是16那么s就只能是0x23或0X12这种形式的字符串
string.atol(s[,base]) #转成long
string.atof(s[,base]) #转成float
这里再强调一次,字符串对象是不可改变的,也就是说在python创建一个字符串后,你不能把这个字符中的某一部分改变。任何上面的函数改变了字符串后,都会返回一个新的字符串,原字串并没有变。其实这也是有变通的办法的,可以用S=list(S)这个函数把S变为由单个字符为成员的list,这样的话就可以使用S[3]='a'的方式改变值,然后再使用S=" ".join(S)还原成字符串
5 列表
创建列表
sample_list = ['a',1,('a','b')]
Python 列表操作
sample_list = ['a','b',0,1,3]
得到列表中的某一个值
value_start = sample_list[0]
end_value = sample_list[-1]
删除列表的第一个值
del sample_list[0]
在列表中插入一个值
sample_list[0:0] = ['sample value']
得到列表的长度
list_length = len(sample_list)
列表遍历
for element in sample_list:
print(element)
Python 列表高级操作/技巧
产生一个数值递增列表
num_inc_list = range(30)
#will return a list [0,1,2,...,29]
用某个固定值初始化列表
initial_value = 0
list_length = 5
sample_list = [ initial_value for i in range(10)]
sample_list = [initial_value]*list_length
# sample_list ==[0,0,0,0,0]
附:python内置类型
1、list:列表(即动态数组,C++标准库的vector,但可含不同类型的元素于一个list中)
a = ["I","you","he","she"] #元素可为任何类型。
下标:按下标读写,就当作数组处理
以0开始,有负下标的使用
0第一个元素,-1最后一个元素,
-len第一个元 素,len-1最后一个元素
取list的元素数量
len(list) #list的长度。实际该方法是调用了此对象的__len__(self)方法。
创建连续的list
L = range(1,5) #即 L=[1,2,3,4],不含最后一个元素
L = range(1, 10, 2) #即 L=[1, 3, 5, 7, 9]
list的方法
L.append(var) #追加元素
L.insert(index,var)
L.pop(var) #返回最后一个元素,并从list中删除之
L.remove(var) #删除第一次出现的该元素
L.count(var) #该元素在列表中出现的个数
L.index(var) #该元素的位置,无则抛异常
L.extend(list) #追加list,即合并list到L上
L.sort() #排序
L.reverse() #倒序
list 操作符:,+,*,关键字del
a[1:] #片段操作符,用于子list的提取
[1,2]+[3,4] #为[1,2,3,4]。同extend()
[2]*4 #为[2,2,2,2]
del L[1] #删除指定下标的元素
del L[1:3] #删除指定下标范围的元素
list的复制
L1 = L #L1为L的别名,用C来说就是指针地址相同,对L1操作即对L操作。函数参数就是这样传递的
L1 = L[:] #L1为L的克隆,即另一个拷贝。
6 字典
dict = {'ob1':'computer', 'ob2':'mouse', 'ob3':'printer'}
每一个元素是pair,包含key、value两部分。key是Integer或string类型,value 是任意类型。
键是唯一的,字典只认最后一个赋的键值。
dictionary的方法
D.get(key, 0) #同dict[key],多了个没有则返回缺省值,0。[]没有则抛异常
D.has_key(key) #有该键返回TRUE,否则FALSE
D.keys() #返回字典键的列表
D.values()
D.items()
D.update(dict2) #增加合并字典
D.popitem() #得到一个pair,并从字典中删除它。已空则抛异常
D.clear() #清空字典,同del dict
D.copy() #拷贝字典
D.cmp(dict1,dict2) #比较字典,(优先级为元素个数、键大小、键值大小)
#第一个大返回1,小返回-1,一样返回0
dictionary的复制
dict1 = dict #别名
dict2=dict.copy() #克隆,即另一个拷贝。
7 元组
tuple
- 元组是以圆括号“()”包围的数据集合,不同成员以“,”分隔。通过下标进行访问
- 不可变序列,可以看做不可变的列表,与列表不同:元组中数据一旦确立就不能改变(所以没有类似列表的增删改操作,只有基本序列操作)
- 支持任意类型,任意嵌套以及常见的序列操作
- 元组通常用在使语句或用户定义的函数能够安全地采用一组值的时候,即被使用的元组的值不会改变声明及使用
7.1 创建元组
tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5 );
tup3 = "a", "b", "c", "d";
tup4 = ();#创建空元祖
tup5 = (50,);#元组中只包含一个元素时,需要在元素后面添加逗号来消除歧义。
元组和字符串类似,下标索引从0开始,可以进行截取组合等。
7.2 访问元组
元组可以使用下标索引来访问元组中的值。
tup1 = ('physics', 'chemistry', 1997, 2000);
tup2 = (1, 2, 3, 4, 5, 6, 7 );
print "tup1[0]: ", tup1[0]
print "tup2[1:5]: ", tup2[1:5]
以上实例输出结果:
tup1[0]: physics
tup2[1:5]: [2, 3, 4, 5]
7.3 修改元组
元组中的元素是不允许修改的,但可以对元组进行连接组合。
tup3 = tup1 + tup2;
7.4 删除元组
元组中的元素是不允许删除的,单可以用del语句删除整个元组。
del tup
7.5 元组的运算符
和字符串一样,源组件可以使用+号和*号进行运算,这就意味着元组可以组合和复制,运算后生成新的元组。
7.6 元组的内置函数
元组包含了以下内置函数:
- cmp(tuple1,tuple2):比较两个元组元素
- len(tuple):计算元组元素个数
- max(tuple):返回元组中元素最大值
- min(tuple):返回元组中元素最小值
- tuple(seq):将列表转换为元组
- tuple的陷阱:当你定义一个tuple时,在定义的时候,tuple的元素就必须被确定下来。
8 浅拷贝
1 >>> a = ['hello', [123, 234]]
2 >>> b = a[:]
3 >>> [id(x) for x in a,b]
4 [4496003656, 4496066752]
5 >>> [id(x) for x in a]
[4496091584, 4495947536]
6 >>> [id(x) for x in b]
7 [4496091584, 4495947536]
Line3,4可以看出a, b地址不同,这符合list是可变的,应开辟不同空间。那浅拷贝就是拷贝了一个副本吗?再看Line5 - 8,我们发现a, b中元素的地址是相同的。如果说字符串'hello'地址一致还能理解,但是第二个元素是list地址仍一致。 这就说明了浅拷贝的特点,只是将容器内的元素的地址复制了一份 。
接着我们尝试修改a, b中的值:
>>> a[0] = 'world'
>>> a[1].append(345)
>>> print 'a = ', a, '
', 'b = ', b
a = ['world', [123, 234, 345]]
b = ['hello', [123, 234, 345]]
a中第一个元素str改变,但是b中未改变;a中第二个元素改变,b中也改变。这就符合不可变的对象修改会开辟新的空间,可变的对象修改不会开辟新空间。也进一步证明了 浅拷贝仅仅是复制了容器中元素的地址 。
8.1 深拷贝
复制代码 代码如下:
>>> from copy import deepcopy
>>> a = ['hello', [123, 234]]
>>> b = deepcopy(a)
>>> [id(x) for x in a, b]
[4496066824, 4496066680]
>>> [id(x) for x in a]
[4496091584, 4496067040]
>>> [id(x) for x in b]
[4496091584, 4496371792]
深拷贝后,可以发现a, b地址以及a, b中元素地址均不同。这才是完全 拷贝了一个副本 。
修改a的值后:
复制代码 代码如下:
>>> a[0] = 'world'
>>> a[1].append(345)
>>> print 'a = ', a, '
', 'b = ', b
a = ['world', [123, 234, 345]]
b = ['hello', [123, 234]]
从Line4,5中可以发现仅仅a修改了,b没有任何修改。 因为b是一个完全的副本,元素地址均与a不同,a修改,b不受影响 。
总结:
- 赋值是将一个对象的地址赋值给一个变量,让变量指向该地址( 旧瓶装旧酒 )。
- 浅拷贝是在另一块地址中创建一个新的变量或容器,但是容器内的元素的地址均是源对象的元素的地址的拷贝。也就是说新的容器中指向了旧的元素( 新瓶装旧酒 )。
- 深拷贝是在另一块地址中创建一个新的变量或容器,同时容器内的元素的地址也是新开辟的,仅仅是值相同而已,是完全的副本。也就是说( 新瓶装新酒 )。