• Number BZOJ3275 最大流


    有N个正整数,需要从中选出一些数,使这些数的和最大。
    若两个数a,b同时满足以下条件,则a,b不能同时被选
    1:存在正整数C,使a*a+b*b=c*c
    2:gcd(a,b)=1

    Sample Output22


    Input
    第一行一个正整数n,表示数的个数。n<=3000
    第二行n个正整数a1,a2,...an
    Output

    最大的和

    Sample Input5 3 4 5 6 7
     
    首先可以发现,只有奇数和偶数才可能满足上面两个条件;
    那么我们把序列分为奇偶两部分;
    设源点st,汇点ed;
    st 和奇数连边,ed 和偶数连边;
    那么我们遍历可能的连边,O(n^2);
    这个连边权值设为 inf;
    (有点最大权闭合子图的意思?
    那么我们求最小割即可;
    最后就是sum-dinic();
    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstdlib>
    #include<cstring>
    #include<string>
    #include<cmath>
    #include<map>
    #include<set>
    #include<vector>
    #include<queue>
    #include<bitset>
    #include<ctime>
    #include<deque>
    #include<stack>
    #include<functional>
    #include<sstream>
    //#include<cctype>
    //#pragma GCC optimize(2)
    using namespace std;
    #define maxn 300005
    #define inf 0x3f3f3f3f
    #define INF 9999999999
    #define rdint(x) scanf("%d",&x)
    #define rdllt(x) scanf("%lld",&x)
    #define rdult(x) scanf("%lu",&x)
    #define rdlf(x) scanf("%lf",&x)
    #define rdstr(x) scanf("%s",x)
    typedef long long  ll;
    typedef unsigned long long ull;
    typedef unsigned int U;
    #define ms(x) memset((x),0,sizeof(x))
    const long long int mod = 1e9 + 7;
    #define Mod 1000000000
    #define sq(x) (x)*(x)
    #define eps 1e-3
    typedef pair<int, int> pii;
    #define pi acos(-1.0)
    const int N = 1005;
    #define REP(i,n) for(int i=0;i<(n);i++)
    typedef pair<int, int> pii;
    inline ll rd() {
    	ll x = 0;
    	char c = getchar();
    	bool f = false;
    	while (!isdigit(c)) {
    		if (c == '-') f = true;
    		c = getchar();
    	}
    	while (isdigit(c)) {
    		x = (x << 1) + (x << 3) + (c ^ 48);
    		c = getchar();
    	}
    	return f ? -x : x;
    }
    
    ll gcd(ll a, ll b) {
    	return b == 0 ? a : gcd(b, a%b);
    }
    ll sqr(ll x) { return x * x; }
    
    /*ll ans;
    ll exgcd(ll a, ll b, ll &x, ll &y) {
    	if (!b) {
    		x = 1; y = 0; return a;
    	}
    	ans = exgcd(b, a%b, x, y);
    	ll t = x; x = y; y = t - a / b * y;
    	return ans;
    }
    */
    
    
    
    ll qpow(ll a, ll b, ll c) {
    	ll ans = 1;
    	a = a % c;
    	while (b) {
    		if (b % 2)ans = ans * a%c;
    		b /= 2; a = a * a%c;
    	}
    	return ans;
    }
    
    int n, m;
    int st, ed;
    struct node {
    	int u, v, nxt, w;
    }edge[maxn<<2];
    
    int head[maxn], cnt;
    void addedge(int u, int v, int w) {
    	edge[cnt].u = u; edge[cnt].v = v; edge[cnt].w = w;
    	edge[cnt].nxt = head[u]; head[u] = cnt++;
    }
    int rk[maxn];
    
    int bfs() {
    	queue<int>q;
    	ms(rk);
    	rk[st] = 1; q.push(st);
    	while (!q.empty()) {
    		int tmp = q.front(); q.pop();
    		for (int i = head[tmp]; i != -1; i = edge[i].nxt) {
    			int to = edge[i].v;
    			if (rk[to] || edge[i].w <= 0)continue;
    			rk[to] = rk[tmp] + 1; q.push(to);
    		}
    	}
    	return rk[ed];
    }
    
    int dfs(int u, int flow) {
    	if (u == ed)return flow;
    	int add = 0;
    	for (int i = head[u]; i != -1; i = edge[i].nxt) {
    		int v = edge[i].v;
    		if (rk[v] != rk[u] + 1 || !edge[i].w)continue;
    		int tmpadd = dfs(v, min(edge[i].w, flow - add));
    		if (!tmpadd) { rk[v] = -1; continue; }
    		edge[i].w -= tmpadd; edge[i ^ 1].w += tmpadd; add += tmpadd;
    	}
    	return add;
    }
    
    int ans;
    void dinic() {
    	while (bfs())ans += dfs(st, inf);
    }
    
    int a[maxn];
    
    bool check(int a, int b) {
    	if(a % 2 == 1 && b % 2 == 1)return 0;
    	if (gcd(a, b) != 1)return 0;
    	ll sum = a * a + b * b; int p = (int)sqrt(sum);
    	if (p*p != sum)return 0;
    	return 1;
    }
    
    int main()
    {
    	//ios::sync_with_stdio(0);
    	memset(head, -1, sizeof(head));
    	rdint(n);int sum = 0;
    	for (int i = 1; i <= n; i++)rdint(a[i]), sum += a[i];
    	st = n + 1; ed = st + 1;
    	for (int i = 1; i <= n; i++) {
    		if (a[i] & 1)addedge(st, i, a[i]), addedge(i, st, 0);
    		else addedge(i, ed, a[i]), addedge(ed, i, 0);
    	}
    	for (int i = 1; i <= n; i++) {
    		for (int j = 1; j <= i; j++) {
    			if (check(a[i], a[j])) {
    				if (a[i] & 1)addedge(i, j, inf), addedge(j, i, 0);
    				else addedge(j, i, inf), addedge(i, j, 0);
    			}
    		}
    	}
    	dinic();
    	cout << sum - ans << endl;
    	return 0;
    }
    
    EPFL - Fighting
  • 相关阅读:
    博士考试复习过程总结
    制作在Linux、Unix上以daemon方式启动Apusic的详细步骤(转)
    重开Blog
    给计算机的兄弟姐妹们补补身体→煲银耳粥
    被人夸成像设计师,高兴呐
    今天问题总结(Hibernate配置参数访问Oracle,Linux下的Apusic自启动)
    HDU ACM 1272 小希的迷宫
    Uva 10115 Automatic Editing
    HDU ACM 1162 Eddy's picture(MST)
    Uva 10474 Where is the Marble?(水题)
  • 原文地址:https://www.cnblogs.com/zxyqzy/p/10110601.html
Copyright © 2020-2023  润新知