• POJ 2891 Strange Way to Express Integers


    Strange Way to Express Integers
    Time Limit: 1000MS   Memory Limit: 131072K
    Total Submissions: 17963   Accepted: 6050

    Description

    Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

    Choose k different positive integers a1a2…, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

    “It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

    Since Elina is new to programming, this problem is too difficult for her. Can you help her?

    Input

    The input contains multiple test cases. Each test cases consists of some lines.

    • Line 1: Contains the integer k.
    • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

    Output

    Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

    Sample Input

    2
    8 7
    11 9

    Sample Output

    31

    Hint

    All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

    Source

     
    题意
    给出$a_i,r_i$
    求$xequiv r_{i}left( mod a_{i} ight)$
    其中$a_i$不互质
     
     
    扩展CRT的应用,算是裸题吧
    第一次一遍写对扩欧好感动啊。。。
     
    #include<iostream>
    #include<cstdio>
    #define LL long long 
    using namespace std;
    const LL MAXN=1e6+10;
    LL K,C[MAXN],M[MAXN],x,y;
    LL gcd(LL a,LL b)
    {
        return b==0?a:gcd(b,a%b);
    }
    LL exgcd(LL a,LL b,LL &x,LL &y)
    {
        if(b==0){x=1,y=0;return a;}
        LL r=exgcd(b,a%b,x,y),tmp;
        tmp=x;x=y;y=tmp-(a/b)*y;
        return r;
    }
    LL inv(LL a,LL b)
    {
        LL r=exgcd(a,b,x,y);
        while(x<0) x+=b;
        return x;
    }
    int main()
    {
        #ifdef WIN32
        freopen("a.in","r",stdin);
        #else
        #endif
        while(~scanf("%lld",&K))
        {
            for(LL i=1;i<=K;i++) scanf("%lld%lld",&M[i],&C[i]);
            bool flag=1;
            for(LL i=2;i<=K;i++)
            {
                LL M1=M[i-1],M2=M[i],C2=C[i],C1=C[i-1],T=gcd(M1,M2);
                if((C2-C1)%T!=0) {flag=0;break;}
                M[i]=(M1*M2)/T;
                C[i]= ( inv( M1/T , M2/T ) * (C2-C1)/T ) % (M2/T) * M1 + C1;
                C[i]=(C[i]%M[i]+M[i])%M[i];
            }
            printf("%lld
    ",flag?C[K]:-1);
        }
        return 0;
    }
     
     
     
  • 相关阅读:
    01数据结构——绪论
    07机器学习实战k-means
    OpenJudge 2756 二叉树
    Poj/OpenJudge 1094 Sorting It All Out
    OpenJudge 2811 熄灯问题 / Poj 1222 EXTENDED LIGHTS OUT
    OpenJudge/Poj 1083 Moving Tables
    OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes
    Poj/OpenJudge 1042 Gone Fishing
    Poj 1013 Counterfeit Dollar / OpenJudge 1013(2692) 假币问题
    Poj 1017 / OpenJudge 1017 Packets/装箱问题
  • 原文地址:https://www.cnblogs.com/zwfymqz/p/8425455.html
Copyright © 2020-2023  润新知