• 跟我学算法- tensorflow 卷积神经网络训练验证码


    使用captcha.image.Image 生成随机验证码,随机生成的验证码为0到9的数字,验证码有4位数字组成,这是一个自己生成验证码,自己不断训练的模型

    使用三层卷积层,三层池化层,二层全连接层来进行组合

    第一步:定义生成随机验证码图片

    number = ['0','1','2','3','4','5','6','7','8','9']
    # alphabet = ['a','b','c','d','e','f','g','h','i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z']
    # ALPHABET = ['A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q','R','S','T','U','V','W','X','Y','Z']
    
    def random_captcha_text(char_set=number, captha_size=4):
        captha_texts = []
        for i in range(captha_size):
            # 随机抽取数字,添加到列表中
            captha_texts.append(random.choice(char_set))
        return captha_texts
    
    def gen_captcha_text_and_image():
        image = ImageCaptcha()
        captcha_texts = random_captcha_text()
        # 列表转换为字符串
        captcha_texts = ''.join(captcha_texts)
        # 产生图片
        captcha = image.generate(captcha_texts)
        captcha_image = Image.open(captcha)
        captcha_image = np.array(captcha_image)
        # 返回字符串和图片
        return captcha_texts, captcha_image

    第二步: 生成训练样本 

    # 把彩图转换为灰度图
    def convert2gray(image):
        if len(image.shape)> 2:
            grey = np.mean(image, -1)
            return grey
        else:
            return image
    # 把文本转换为可用的标签维度是40
    def text2vec(text):
        text_len = len(text)
        int(text[0])
        if text_len > MAX_CAPTCHA:
            raise ValueError('验证码最长4个字符')
        vec = np.zeros(MAX_CAPTCHA*CHAR_SET_LEN)
        for index, c in enumerate(text):
    
            now_index = index * CHAR_SET_LEN + int(c.strip())
            vec[now_index] = 1
        return vec
    # 生成训练样本
    def get_next_batch(batch_size=128):
        batch_x = np.zeros([batch_size, IMAGE_HEIGHT*IMAGE_WEIGHT])
        batch_y = np.zeros([batch_size, MAX_CAPTCHA*CHAR_SET_LEN])
        # 有时候生成的图像大小不是(60, 160, 3), 重新生成
        def wrap_gen_captcha_text_and_image():
            text, image = gen_captcha_text_and_image()
            while True:
                if image.shape == (60, 160, 3):
                    return text, image
    
        for i in range(batch_size):
            text, image = wrap_gen_captcha_text_and_image()
            image = convert2gray(image)
            # 转换成的一维的灰度图,使得其范围为(0, 1)
            batch_x[i, :] = image.flatten() / 255  # (image.flatten()-128)/128  mean为0
           # 把输入的文本转换为标签类型
            batch_y[i, :] = text2vec(text)
    
        return batch_x, batch_y

    第三步: 定义CNN,这里的CNN为3层卷积,3层池化, 2层全连接

    # 定义CNN
    def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1):
        # [-1, IMAGE_HEIGHT, IMAGE_WEIGHT, 1] -1表示batch_size,1表示样本深度,也就是RGB通道的个数 
        x = tf.reshape(X, [-1, IMAGE_HEIGHT, IMAGE_WEIGHT, 1])
    
        # 创建w_c1和b_c1的初始化变量
        w_c1 = tf.Variable(w_alpha*tf.random_normal([3, 3, 1, 32]))
        b_c1 = tf.Variable(b_alpha*tf.random_normal([32]))
        # 进行卷积操作
        conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=(1, 1, 1, 1), padding='SAME'), b_c1))
        # 进行池化操作
        conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv1 = tf.nn.dropout(conv1, keep_prob)
    
        w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64]))
        b_c2 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=(1, 1, 1, 1), padding='SAME'), b_c2))
        conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv2 = tf.nn.dropout(conv2, keep_prob)
    
        w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64]))
        b_c3 = tf.Variable(b_alpha * tf.random_normal([64]))
        conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=(1, 1, 1, 1), padding='SAME'), b_c3))
        conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
        conv3 = tf.nn.dropout(conv3, keep_prob)
    
        # 第一个全连接层
        #8*20*64表示conv3的维度, 60/2/2/2 = 8 160/2/2/2=20 
        w_d = tf.Variable(w_alpha * tf.random_normal([8 * 20 * 64, 1024]))
        b_d = tf.Variable(b_alpha * tf.random_normal([1024]))
        dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]])
        print(tf.matmul(dense, w_d).shape, b_d.shape)
        dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d))
        dense = tf.nn.dropout(dense, keep_prob)
    
        # 第二个全连接层, 不需要激活层
        w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA*CHAR_SET_LEN]))
        b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA*CHAR_SET_LEN]))
    
        out = tf.add(tf.matmul(dense, w_out), b_out)
        return out

    第四步: 定义训练CNN函数

    def train_crack_captcha_cnn():
        output = crack_captcha_cnn()
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y))
        optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
        predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN])
        max_idx_p = tf.argmax(predict, 2)
        max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2)
        correct_pred = tf.equal(max_idx_p, max_idx_l)
        accr = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            #变量初始化
            sess.run(tf.global_variables_initializer())
            step = 0
            # 让它一直都训练直到精度大于0.5
            while True:
                # 生成64个样本
                batch_x, batch_y = get_next_batch(batch_size=64)
                __, _loss = sess.run([optimizer, loss], feed_dict={X:batch_x, Y:batch_y, keep_prob: 0.75})
                print(step, _loss)
    
                # 每一百次循环计算一次返回值
                if step%100 == 0 :
                    batch_text_x, batch_text_y = get_next_batch(batch_size=128)
                    acc = sess.run(accr, feed_dict={X:batch_text_x, Y:batch_text_y, keep_prob:1.})
                    print(acc)
                    # 如果准确率大于0.5就保存模型
                    if acc > 0.5:
                        saver.save(sess, '.model/crack_captcha/model')
                        break
                step += 1

    第五步: 定义训练好后的预测模型

    # 用于训练好后的模型进行预测
    def crack_captcha(captcha_image):
        
        output = crack_captcha_cnn()
        # 初始化保存数据
        saver = tf.train.Saver()
        with tf.Session() as sess:
            # 重新加载sess
            saver.restore(sess, '.model/crack_captcha/model')
            
            predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN], 2)
            # 获得CNN之后的结果
            text_list = sess.run(predict, feed_dict={X:[captcha_image], keep_prob:1})
            # 让输出结果变成一个列表
            text = text_list[0].tolist()
            return text

    第六步:主要函数用来进行训练,或者测试

    if __name__ == '__main__':
        #获得文本和图片
        train = 0
        # 当train=0时进行训练
        if train==0:
            number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
            text, image = gen_captcha_text_and_image()
    
            IMAGE_HEIGHT = 60
            IMAGE_WEIGHT = 160
            MAX_CAPTCHA = len(text)
            print('验证码文本最长字符数', MAX_CAPTCHA)
            char_set = number
            CHAR_SET_LEN = len(char_set)
    
            X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT*IMAGE_WEIGHT])
            Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA*CHAR_SET_LEN])
            keep_prob = tf.placeholder(tf.float32)
    
            train_crack_captcha_cnn()
        # 当trian=1时进行测试    
        elif train == 1:
            text, image = gen_captcha_text_and_image()
            # 将模型转换为灰度图以后再进行测试
            image = convert2gray(image)
            image = image.flatten() / 255
            IMAGE_HEIGHT = 60
            IMAGE_WEIGHT = 160
            MAX_CAPTCHA = len(text)
            print('验证码文本最长字符数', MAX_CAPTCHA)
            char_set = number
            CHAR_SET_LEN = len(char_set)
            X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WEIGHT])
            Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN])
            keep_prob = tf.placeholder(tf.float32)
            pred_text = crack_captcha(image)
            print('真实值', text, '测试值', pred_text)
  • 相关阅读:
    二、Heroku使用教程
    一、Heroku简单介绍
    idea中HTTP Client使用
    在Idea中添加javap命令(反编译)
    Linux中如何记住git密码
    通过flume的hivesink接收数据存到hive数据库表中
    《我想进大厂》之Java基础夺命连环16问
    hive存储json数据
    FreeMarker学习
    arthas-boot.jar使用-代码耗时分析
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/9577690.html
Copyright © 2020-2023  润新知