• 跟我学算法- tensorflow VGG模型进行测试


    我们使用的VGG模型是别人已经训练好的一个19层的参数所做的一个模型

    第一步:定义卷积分部操作函数

    mport scipy.io
    import numpy as np
    import os
    import scipy.misc
    import matplotlib.pyplot as plt
    import tensorflow as tf
    
    # 进行卷积操作
    def _conv_layer(input, weights, bias):
        conv = tf.nn.conv2d(input, tf.constant(weights), strides=(1, 1, 1, 1),
                            padding='SAME')
        return tf.nn.bias_add(conv, bias)
    # 进行池化操作
    def _pool_layer(input):
        return tf.nn.max_pool(input, ksize=(1, 2, 2, 1), strides=(1, 2, 2, 1),
                              padding='SAME')
    # 进行去均值的操作
    def preprocess(image, mean_pixel):
        return image - mean_pixel
    
    def unprocess(image, mean_pixel):
        return image + mean_pixel
    
    def imread(path):
        return scipy.misc.imread(path).astype(np.float)
    def imsave(path, img):
        img = np.clip(img, 0, 255).astype(np.uint8)
        scipy.misc.imsave(path, img)

    第二步:定义卷积操作函数

    def net(data_path, input_image):
        layers = (
            'conv1_1', 'relu1_1', 'conv1_2', 'relu1_2', 'pool1',
            'conv2_1', 'relu2_1', 'conv2_2', 'relu2_2', 'pool2',
            'conv3_1', 'relu3_1', 'conv3_2', 'relu3_2', 'conv3_3',
            'relu3_3', 'conv3_4', 'relu3_4', 'pool3',
            'conv4_1', 'relu4_1', 'conv4_2', 'relu4_2', 'conv4_3',
            'relu4_3', 'conv4_4', 'relu4_4', 'pool4',
            'conv5_1', 'relu5_1', 'conv5_2', 'relu5_2', 'conv5_3',
            'relu5_3', 'conv5_4', 'relu5_4'
        )
        # 载入数据
        data = scipy.io.loadmat(data_path)
        mean = data['normalization'][0][0][0]
        mean_pixel = np.mean(mean, axis=(0, 1))
        weights = data['layers'][0]
        net = {}
        current = input_image
        for i, name in enumerate(layers):
            kind = name[:4]
            if kind == 'conv':
                kernels, bias = weights[i][0][0][0][0]
                kernels = np.transpose(kernels, (1, 0, 2, 3))
                # 重构reshape
                bias = bias.reshape(-1)
                current = _conv_layer(current, kernels, bias)
            elif kind == 'relu':
                current = tf.nn.relu(current)
            elif kind == 'pool':
                current = _pool_layer(current)
            # 用来存放对应的处理结果
            net[name] = current
    
        assert len(net) == len(layers)
    
        return net, mean_pixel, layers

    第三步: 构造文件路径

    # 返回当前的路径
    cwd = os.getcwd()
    # 别人已经训练好的模型
    VGG_PATH =cwd + '/data/imagenet-vgg-verydeep-19.mat'
    IMG_PATH = cwd + '/data/cat.jpg'
    input_image = imread(IMG_PATH)
    shape = (1, input_image.shape[0], input_image.shape[1], input_image.shape[2])

    第四步:训练模型,输出特征图像

    with tf.Session as sess:
        image = tf.placeholder('float', shape=shape)
        #训练模型
        nets, mean_pixel, all_layers = net(VGG_PATH, image)
        # 去除均值
        input_image_pre = np.array([preprocess(input_image, mean_pixel)])
        layers = all_layers
        for i, layer in enumerate(layers):
            # 输出模型的单个特征
            features = nets[layer].eval(feed_dict={image:input_image})
            print(" Type of 'features' is ", type(features))
            print(" Shape of 'features' is %s" % (features.shape,))
        # 画卷积特征图
            if 1:
                plt.figure(i+1, figsize=(10, 5))
                plt.matshow(features[0, :, :, 0], cmap=plt.cm.gray, fignum=i+1)
                plt.title(""+layer)
                plt.colorbar()
                plt.show()
  • 相关阅读:
    树莓派研究笔记(2)-- 安装Nginx 服务器,PHP 和 SQLite
    树莓派研究笔记(1)-- 安装Mono
    Qemu虚拟机 玩树莓派最新版系统 (截止2017-04-10)
    CLRInjection
    CLRMonitor
    Xamarin Mono for VS开发窗体标题(Title)乱码解决方案
    精美3D中国象棋
    怀旧系列(5)----大学时代的疯狂
    怀旧系列(4)----文曲星编程GV-Basic
    怀旧系列(3)----Pascal
  • 原文地址:https://www.cnblogs.com/my-love-is-python/p/9571239.html
Copyright © 2020-2023  润新知