• 平衡树合集


    平衡树

    前言

    笔者码风不好,换言之就是语文不好

    这篇文章介绍了 fhq_treap, AVL, ScapeGoatTree,这三类数据结构,要是看 splay 请前往 SHIROKU 他写的很好(雾,反正我四爷看不懂splay

    AVL

    说到 AVL 树,我就十分激动,我觉得最简单的,最平易近人的树也就是他,除了码量略大之外还算有好吧,以下的代码均已 P3369 为准,但是 AVL 树是 P6136

    操作 BST 基本一致,但是不得不说的是发明 AVL 的人能想到旋转真的太妙了。

    AVL: 其每个节点左右孩子的高度差不能超过一,这就保证了十分平衡,具有十分优秀的效率。

    然后不平衡就旋转。注意左旋右旋在数据结构了写的和算导是反的,我学的是叫左旋就把左孩子旋转为自己的树根。然后注意双旋修正

    在 OI 中极少应用但是还是不错的,因为这玩意出了红黑树之外是最难写的.四种插入,六种删除,四个旋转,然后 prv 和 nxt 操作也不,好写,就是一个遍历的过程,然后遍历到了你懂的.

    没啥好说的,注意细节。我有不是讲算法的,就是讲个思路,提供思路了自己写不出来?我觉得挺显然的。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define gc() getchar()
    #define pc(i) putchar(i)
    
    template <typename KYN>
    inline KYN read()
    {
    	KYN x = 0;
    	char ch = gc();
    	bool f = 0;
    	while(!isdigit(ch))
    	{
    		f = (ch == '-');
    		ch = gc();
    	}
    	while(isdigit(ch))
    	{
    		x = x * 10 + (ch - '0');
    		ch = gc();
    	}
    	return f ? -x : x;
    }
    
    template <typename KYN>
    void put(KYN x)
    {
    	if(x < 0)
    	{
    		x = -x;
    		pc('-');
    	}
    	if(x < 10) {
    		pc(x + 48);
    		return;
    	}
    	put(x / 10);
    	pc(x % 10 + 48);
    	return ;
    }
    
    #define vit std::vector <int>:: iterator 
    #define vi std::vector <int>
    #define lbd(i, j, k) lower_bound(i, j, k)
    #define pii std::pair <int, int>
    #define mkp(i, j) std::make_pair(i, j)
    #define lowbit(i) (i & -i)
    #define ispow(i) (i == lowbit(i))
    #define rdi() read <int> ()
    #define rdl() read <long long> ()
    #define pti(i) put <int> (i), putchar(' ')
    #define ptl(i) put <long long> (i), putchar(' ')
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    
    const int Maxn = 1e6  + 1e5 + 111;
    
    namespace RSX_love_KYN
    {
    
    const int MAXN = 1e6  + 1e5 + 111;
    
    template <typename KYN>
    class avlTree
    {
    	private:
    	
    	struct avlNode;
    	typedef avlNode *avl;
    	struct avlNode
    	{
    		avl ls, rs;
    		int size, height, num;
    		KYN data;
    		void maintain() 
    		{
    			this->size = this->ls->size + this->rs->size + this->num;
    			this->height = max(this->ls->height , this->rs->height) + 1;
    		}
    	};
    	
    	protected:
    	avl rot, null, tot, deleted[MAXN];
    	avlNode memory[MAXN];
    	int deltop;
    	inline avl init(KYN x)
    	{
    		avl tmp = deltop ? deleted[deltop--] : tot++;
    		tmp->ls = tmp->rs = null;
    		tmp->size = tmp->num = tmp->height = 1;
    		tmp->data = x;
    		return tmp;
    	}
    
    	inline avl Single_left(avl T)
    	{
    		avl a = T->ls;
    		T->ls = a->rs;
    		a->rs = T;
    		T->maintain();
    		a->maintain();
    		return a;
    	}
    	
    	inline avl Single_right(avl T)
    	{
    		avl a = T->rs;
    		T->rs = a->ls;
    		a->ls = T;
    		T->maintain();
    		a->maintain();
    		return a;
    	}
    	
    	inline avl double_left(avl T)
    	{
    		T->ls = Single_right(T->ls);
    		return Single_left(T);
    	}
    	
    	inline avl double_right(avl T)
    	{
    		T->rs = Single_left(T->rs);
    		return Single_right(T);
    	}
    	
    	avl insert(avl T, KYN x)
    	{
    		if(T == null) return init(x);
    		if(x == T->data)
    		{
    			++(T->num);
    			T->maintain();
    			return T;
    		}
    		if(x < T->data)
    		{
    			T->ls = insert(T->ls, x);
    			T->maintain();
    			if(T->ls->height - T->rs->height == 2)
    			{
    				if(x < T->ls->data) T = Single_left(T);
    				else T = double_left(T);
    			}
    		}
    		else
    		{
    			T->rs = insert(T->rs, x);
    			T->maintain();
    			if(T->rs->height - T->ls->height == 2)
    			{
    				if(T->rs->data < x) T = Single_right(T);
    				else T = double_right(T);
    			}
    		}
    		return T;
    	}
    	
    	avl erase(avl T, KYN x)
    	{
    		if(T == null) return null;
    		if(x < T->data)
    		{
    			T->ls = erase(T->ls, x);
    			T->maintain();
    			if(T->rs->height - T->ls->height == 2)
    			{
    				if(T->rs->rs->height >= T->rs->ls->height) T = Single_right(T);
    				else T = double_right(T);
    			}
    		}
    		else if(T->data < x)
    		{
    			T->rs = erase(T->rs, x);
    			T->maintain();
    			if(T->ls->height - T->rs->height == 2)
    			{
    				if(T->ls->ls->height >= T->ls->rs->height) T = Single_left(T);
    				else T = double_left(T);
    			}
    		}
    		else
    		{
    			if(T->num > 1)
    			{
    				--(T->num);
    				T->maintain();
    				return T;
    			}
    			if(T->ls != null && T->rs != null)
    			{
    				avl p = T->rs;
    				while(p->ls != null) p = p->ls;
    				T->num = p->num;
    				T->data = p->data, p->num = 1;
    				T->rs = erase(T->rs, T->data);
    				T->maintain();
    				if(T->ls->height - T->rs->height == 2)
    				{
    					if(T->ls->ls->height >= T->ls->rs->height) T = Single_left(T);
    					else T = double_left(T);
    				}
    			}
    			else
    			{
    				avl p = T;
    				if(T->ls != null) T = T->ls;
    				else if(T->rs != null) T = T->rs;
    				else T = null;
    				deleted[++deltop] = p;
    			}
    		}
    		return T;
    	}
    	
    	KYN get_rank(avl T, KYN x) 
    	{
    		int ans = 0;
    		while(T != null)
    		{
    			if(T->data == x) { return ans + T->ls->size + 1; }
    			else if(x < T->data) { T = T->ls; }
    			else { ans += T->ls->size + T->num; T = T->rs; }
    		}
    		return ans + 1;
    	}
    	
    	KYN get_data(avl T, int rank)
    	{
    		while(T != null)
    		{
    			if(T->ls->size >= rank) T = T->ls;
    			else if(T->ls->size + T->num >= rank)  return T->data;
    			else rank -= T->num + T->ls->size; T = T->rs;
    		}
    	}
    	
    	avl makeempty(avl x)
    	{
    		if(x == null) return null;
    		x->ls = makeempty(x->ls);
    		x->rs = makeempty(x->rs);
    		deleted[++deltop] = x;
    		return null;
    	}
    	
    	void output(avl x)
    	{
    		if(x == null) return;
    		output(x->ls);
    		put <KYN> (x->data);
    		putchar(' ');
    		output(x->rs);
    	}
    	
    	avl find(avl T, KYN x)
    	{
    		while(T != null) {
    			if(T->data == x) return T;
    			else if(T->data > x) T = T->ls;
    			else T = T->rs;
    		}
    		return null;
    	}
    	
    	public:	
    	KYN prv(KYN x)
    	{
    		KYN ans = KYN(-1 << 30);
    		avl tmp = rot;
    		while(tmp != null)
    		{
    			if(tmp->data == x)
    			{
    				if(tmp->ls != null)
    				{
    					tmp = tmp->ls;
    					while(tmp->rs != null) tmp = tmp->rs;
    					ans = tmp -> data;
    				}
    				break;
    			}
    			if(tmp->data < x && ans < tmp->data) ans = tmp->data;
    			tmp = tmp->data < x ? tmp->rs : tmp->ls;
    		}
    		return ans;
    	}
    	
    	KYN next(KYN x) {
    		KYN ans = KYN(1 << 30);
    		avl tmp = rot;
    		while(tmp != null)
    		{
    			if(tmp->data == x)
    			{
    				if(tmp->rs != null)
    				{
    					tmp = tmp->rs;
    					while(tmp->ls != null) tmp = tmp->ls;
    					ans = tmp->data;
    				}
    				break;
    			}
    			if(x < tmp->data && tmp->data < ans) ans = tmp->data;
    			tmp = tmp->data < x ? tmp->rs : tmp->ls;
    		}
    		return ans;
    	}
    	
    	avlTree()
    	{
    		deltop = 0;
    		null = tot++;
    		null->ls = null->rs = null;
    		null->size = null->height = null->num = 0;
    		rot = null;
    		tot = memory;
    	}
    	
    	inline void insert(KYN x) { rot = insert(rot, x); return ; }
    	
    	inline void erase(KYN x) { rot = erase(rot, x); }
    	
    	inline int get_rank(KYN x) { return get_rank(rot, x); }
    	
    	inline KYN get_data(int x) { return get_data(rot, x); }
    	
    	void clear() { rot = makeempty(rot); }
    	
    	bool find(KYN x) { return find(rot, x) != null; }
    	
    	void output() { output(rot); }
    	
    	KYN operator[] (int k) { return get_data(k); }
    	
    	int size() { return rot->size; }
    };
    
    }
    
    using namespace RSX_love_KYN;
    
    int n, opt, x, m, last = 0, tmp, ans;
    
    avlTree <int> tree;
    
    int main() {
    #ifdef _DEBUG
    	freopen("P6136_2.in", "r", stdin);
    #endif
    	n = rdi(); m = rdi();
    	while(n--) tree.insert(rdi());
    	while(m--) {
    		opt = rdi(); x = rdi();
    		x ^= last;
    		switch (opt)
    		{
    			case 1: tree.insert(x); break;
    			case 2: tree.erase(x); break;
    			case 3: last = tree.get_rank(x); ans ^= last; break;
    			case 4: last = tree[x]; ans ^= last; break;
    			case 5: last = tree.prv(x); ans ^= last; break;
    			case 6: last = tree.next(x); ans ^= last; break;
    		}
    	}
    	pti(ans);
    	return 0;
    }
    

    替罪羊树

    我第二种学的树,不出意外在平衡树裸题里不会用他,太难写了艹。

    思想:暴力即优雅.不平衡暴力重构就行了

    定义不平衡的概念:一个树太空了和太歪了

    没啥好说的。

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long ll;
    typedef double db;
    
    template <typename T>
    inline T read()
    {
    	T x = 0;
    	char ch = getchar();
    	bool f = 0;
    	while(ch < '0' || ch > '9')
    	{
    		f = (ch == '-');
    		ch = getchar();
    	}
    	while(ch <= '9' && ch >= '0')
    	{
    		x = (x << 1) + (x << 3) + (ch - '0');
    		ch = getchar();
    	}
    	return f ? -x : x;
    }
    
    template <typename T>
    
    void put(T x)
    {
    	if(x < 0) { x = -x; putchar('-'); }
    	if(x < 10) { putchar(x + 48); return; }
    	put(x / 10);
    	putchar(x % 10 + 48);
    }
    
    int mid(int l, int r) { return (l + r) >> 1; }
    
    const db alpha=0.7125;
    	
    template <typename name>
    class ScapeGoat
    {
    	private:
    		struct sgtNode;
    		typedef sgtNode *sgt;
    		struct sgtNode
    		{
    			sgt ls, rs;
    			int size, valid;
    			name data;
    			bool del;
    			inline bool bad()
    				{ return (db) ls->size > alpha * (db) size || (db) rs->size > alpha * (db) size || valid * 3 <= size; }
    			inline void update()
    				{ size = ls->size + rs->size + !del; valid = ls->valid + rs->valid + !del; }
    		};
    	protected:
    		sgt rot = NULL, null = NULL;
    		
    		inline sgt init(name x)
    		{
    			sgt tmp = new sgtNode;
    			tmp->ls = tmp->rs = null;
    			tmp->del = 0;
    			tmp->size = tmp->valid = 1;
    			tmp->data = x;
    			return tmp;
    		}
    		
    		void dfs(sgt T, vector <sgt> &ve) {
    			if(T == null) return ;
    			dfs(T->ls ,ve);
    			if(!T->del) ve.push_back(T);
    			dfs(T->rs, ve);
    			if(T->del) delete T;
    		}
    		
    		sgt build(int l, int r, vector <sgt> &ve) {
    			if(l > r) return null;
    			int mid = (l + r) >> 1;
    			sgt T = ve[mid];
    			T->ls = build(l, mid - 1, ve);
    			T->rs = build(mid + 1, r, ve);
    			T->update();
    			return T;
    		}
    		
    		void rebuild(sgt &T) {
    			vector <sgt> ve;
    			dfs(T, ve);
    			T = build(0, ve.size() - 1, ve);
    			return ;
    		}
    		
    		void insert(sgt &T, name x) {
    			if(T == null) {
    				T = init(x);
    				return;
    			}
    			++(T->size);
    			++(T->valid);
    			if(x < T->data) insert(T->ls, x);
    			else insert(T->rs, x);
    			if(T->bad()) rebuild(T);
    			return;
    		}
    		
    		void erase(sgt &T, int rk) {
    			if(T == null) return;
    			if(!T->del && rk == T->ls->valid + !T->del) {
    				T->del = 1;
    				--(T->valid);
    				return;
    			}
    			--(T->valid);
    			if(rk <= T->ls->valid + !T->del) erase(T->ls, rk);
    			else erase(T->rs, rk - T->ls->valid - !T->del);
    			return;
    		}
    		
    		sgt makeempty(sgt x)
    		{
    			if(x == null) return null;
    			x->ls = makeempty(x->ls);
    			x->rs = makeempty(x->rs);
    			delete x;
    			return null;
    		}
    		
    		bool fin(sgt T, name x)
    		{
    			if(T == null) return 0;
    			if(T->data == x) return 1;
    			if(T->data < x) return fin(T->rs, x);
    			return fin(T->ls, x);
    		}
    	public:
    		ScapeGoat()
    		{
    			if(null == NULL)
    			{
    				null = new sgtNode;
    				null->ls = null->rs = null;
    				null->size = null->valid = null->del = 0;
    			}
    			rot = null;
    		}
    		
    		inline name get_data(int rk) {
    			sgt T = rot;
    			while(T != null) {
    				if(!T->del && !T->del + T->ls->valid == rk) { return T->data; }
    				if(rk <= T->ls->valid + !T->del) T = T->ls;
    				else {
    					rk -= T->ls->valid + !T->del;
    					T = T->rs;
    				}
    			}
    		}
    		
    		inline int get_rank(name x) {
    			int ans = 1;
    			sgt T = rot;
    			while(T != null) {
    				if(x <= T->data) { T = T->ls; }
    				else { ans += T->ls->valid + !T->del; T=T->rs; }
    			}
    			return ans;
    		}
    		
    		inline void insert(name x) { insert(rot, x); return ; }
    		
    		inline void erase(name x) { erase(rot, get_rank(x)); }
    		
    		inline bool find(name x) { return fin(rot, x); }
    		
    		inline int prv(name x) { return get_data(get_rank(x) - 1); }
    		
    		inline int next(name x) { return get_data(get_rank(x + 1)); }
    		
    		void clear() { rot = makeempty(rot); }
    };
    
    ScapeGoat <int> tree;
    
    int n, x, opt;
    
    int main()
    {
    	// freopen("in.txt", "r", stdin);
    	n = read <int> ();
    	while(n--)
    	{
    		opt = read <int> ();
    		x = read <int> ();
    		switch(opt)
    		{
    			case 1: tree.insert(x); break;
    			case 2: tree.erase(x); break;
    			case 3: put(tree.get_rank(x)), putchar('
    '); break;
    			case 4: put(tree.get_data(x)), putchar('
    '); break;
    			case 5: put(tree.prv(x)), putchar('
    '); break;
    			case 6: put(tree.next(x)), putchar('
    '); break;
    		}
    	}
    	tree.clear();
    	
    	return 0;
    }
    

    fhq_treap

    好东西呀。真的好东西。可以序列维护,避免了我不会 (splay) 的尴尬.

    话说我不会treap,就会了 fhq_treap..

    两个函数主要 splitmerge 这是好东西呀。

    有两种 merge 一种是根据 size(序列维护),还有就是根据权值其他平衡树.

    不多说了代码实现

    #include <bits/stdc++.h>
    
    using namespace std;
    
    #define gc() getchar()
    #define pc(i) putchar(i)
    
    template <typename T>
    inline T read()
    {
    	T x = 0;
    	char ch = gc();
    	bool f = 0;
    	while(!isdigit(ch))
    	{
    		f = (ch == '-');
    		ch = gc();
    	}
    	while(isdigit(ch))
    	{
    		x = x * 10 + (ch - '0');
    		ch = gc();
    	}
    	return f ? -x : x;
    }
    
    template <typename T>
    void put(T x)
    {
    	if(x < 0)
    	{
    		x = -x;
    		pc('-');
    	}
    	if(x < 10) {
    		pc(x + 48);
    		return;
    	}
    	put(x / 10);
    	pc(x % 10 + 48);
    	return ;
    }
    
    #define vit std::vector <int>:: iterator
    #define sit std::string:: iterator
    #define vi std::vector <int>
    #define lbd(i, j, k) lower_bound(i, j, k)
    #define pii std::pair <int, int>
    #define mkp(i, j) std::make_pair(i, j)
    #define lowbit(i) (i & -i)
    #define ispow(i) (i == lowbit(i))
    #define rdi() read <int> ()
    #define rdl() read <long long> ()
    #define pti(i) put <int> (i), putchar('
    ')
    #define ptl(i) put <long long> (i), putchar(' ')
    #define For(i, j, k) for(int i = j; i <= k; ++i)
    
    typedef long long ll;
    typedef double db;
    typedef long double ldb;
    typedef unsigned long long ull;
    typedef unsigned int ui;
    
    const int Maxn = 204001;
    
    /*
    一种叫做 FHQ-Treap,又称作无旋treap
    */
    
    class Treap
    {
    	private:
    	struct Node;
    	typedef Node *node;
    #define pnn pair <node, node>
    	struct Node
    	{
    		node son[2];
    		int size, val, rad;
    		void maintain()
    		{
    			this->size = this->son[0]->size + this->son[1]->size + 1;
    			return void();
    		}
    	};
    	protected:
    	node null, rot, tot, del[Maxn];
    	Node memory[Maxn];
    	int deltop;
    	
    	inline node init(int x)
    	{
    		node tmp = deltop ? del[deltop--] : tot++;
    		tmp->son[0] = tmp->son[1] = null;
    		tmp->size = 1;
    		tmp->val = x;
    		tmp->rad = rand();
    		return tmp;
    	}
    	
    	pnn split(node T, int k)
    	{
    		if(T == null) return mkp(null, null);
    		pnn t;
    		if(k < T->val)
    		{
    			t = split(T->son[0], k);
    			T->son[0] = t.second;
    			T->maintain();
    			t.second = T;
    		}
    		else
    		{
    			t = split(T->son[1], k);
    			T->son[1] = t.first;
    			T->maintain();
    			t.first = T;
    		}
    		return t;
    	}
    	
    	node merge(node x, node y)
    	{
    		if(x == null) return y;
    		if(y == null) return x;
    		if(x->rad < y->rad)
    		{
    			x->son[1] = merge(x->son[1], y);
    			x->maintain();
    			return x;
    		}
    		else
    		{
    			y->son[0] = merge(x, y->son[0]);
    			y->maintain();
    			return y;
    		}
    	}
    	
    	void _insert(int v)
    	{
    		pnn t = split(rot, v);
    		rot = merge(merge(t.first, init(v)), t.second);
    	}
    	
    	void _erase(int v)
    	{
    		pnn t = split(rot, v);
    		pnn t1 = split(t.first, v - 1);
    		del[++deltop] = t1.second;
    		t1.second = merge(t1.second->son[0], t1.second->son[1]);
    		rot = merge(merge(t1.first, t1.second), t.second);
    	}
    	
    	int _rk(int v)
    	{
    		pnn t = split(rot, v - 1);
    		int ans = t.first->size + 1;
    		rot = merge(t.first, t.second);
    		return ans;
    	}
    	
    	int _data(node T, int rk)
    	{
    		while(T != null)
    		{
    			if(1 + T->son[0]->size == rk) return T->val;
    			if(rk <= T->son[0]->size) T = T->son[0];
    			else
    			{
    				rk -= T->son[0]->size + 1;
    				T = T->son[1];
    			}
    		}
    	}
    	
    	int _prv(int v)
    	{
    		pnn t = split(rot, v - 1);
    		int ans = _data(t.first, t.first->size);
    		rot = merge(t.first, t.second);
    		return ans;
    	}
    	
    	void output(node x)
    	{
    		if(x == null) return;
    		output(x->son[0]);
    		pti(x->val);
    		output(x->son[1]);
    	}
    	
    	int _nxt(int v)
    	{
    		pnn t = split(rot, v);
    		int ans = _data(t.second, 1);
    		rot = merge(t.first, t.second);
    		return ans;
    	}
    	
    	node mky(node x)
    	{
    		if(x == null) return null;
    		x->son[0] = mky(x->son[0]);
    		x->son[1] = mky(x->son[1]);
    		del[++deltop] = x;
    		return null;
    	}
    	
    	public:
    	Treap()
    	{
    		tot = memory;
    		deltop = 0;
    		null = tot++;
    		null->son[0] = null->son[1] = null;
    		null->size = 0;
    		rot = null;
    	}
    	
    	inline void insert(int v) { return _insert(v); }
    	
    	inline void erase(int v) { return _erase(v); }
    	
    	inline int rk(int v) { return _rk(v); }
    	
    	inline int data(int v) { return _data(rot, v); }
    	
    	inline int prv(int v) { return _prv(v); }
    	
    	inline int nxt(int v) { return _nxt(v); }
    	
    	void output() { return output(rot); }
    	
    	int operator [](int v) { return _data(rot, v); }
    	
    	void clear() { rot = mky(rot); }
    }tree;
    
    int n;
    
    int main()
    {
    #ifdef _DEBUG
    	freopen("in.txt", "r", stdin);
    #endif
    	srand(20050217);
    	n = rdi();
    	For(i, 1, n)
    	{
    		switch (rdi())
    		{
    			case 1: tree.insert(rdi()); break;
    			case 2: tree.erase(rdi()); break;
    			case 3: pti(tree.rk(rdi())); break;
    			case 4: pti(tree[rdi()]); break;
    			case 5: pti(tree.prv(rdi())); break;
    			case 6: pti(tree.nxt(rdi())); break;
    		}
    	}
    	return 0;
    }
    

    怕是我,永远无法释怀的罢

  • 相关阅读:
    《新下级学》第七章第二节——冲突
    《新下级学》第七章序和第一节——微观互动
    《新下级学》第六章第七第八节(本章完)——下级软弱的根源等
    《新下级学》第六章第五第六节——下级的底线等
    《新下级学》第六章第三第四节——下级对平级的看法等
    《新下级学》第六章第二节——下级对自己的需求、能力和责任的看法
    《新下级学》第六章序、第一节——下级的思维特点及处境
    《新下级学》第四章、第五章——什么是“下级”
    《新下级学》第三章——新下级学的立场
    变电站GPS校时产品(GPS对时设备)在线监测技术
  • 原文地址:https://www.cnblogs.com/zhltao/p/12805942.html
Copyright © 2020-2023  润新知