• HDU 2828 DLX搜索


    Lamp

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 771    Accepted Submission(s): 230
    Special Judge


    Problem Description
    There are several switches and lamps in the room, however, the connections between them are very complicated. One lamp may be controlled by several switches, and one switch may controls at most two lamps. And what’s more, some connections are reversed by mistake, so it’s possible that some lamp is lighted when its corresponding switch is “OFF”!

    To make things easier, we number all the lamps from 1 to N, and all the switches 1 to M. For each lamps, we give a list of switches controlling it. For example, for Lamp 1, the list is “1 ON 3 OFF 9 ON”, that means Lamp 1 will be lighted if the Switch 1 is at the “ON” state OR the Switch 3 is “OFF” OR the Switch 9 is “ON”.

    Now you are requested to turn on or off the switches to make all the lamps lighted.
     

    Input
    There are several test cases in the input. The first line of each test case contains N and M (1 <= N,M <= 500), then N lines follow, each indicating one lamp. Each line begins with a number K, indicating the number of switches controlling this lamp, then K pairs of “x ON” or “x OFF” follow.
     

    Output
    Output one line for each test case, each contains M strings “ON” or “OFF”, indicating the corresponding state of the switches. For the solution may be not unique, any correct answer will be OK. If there are no solutions, output “-1” instead.
     

    Sample Input
    2 2 2 1 ON 2 ON 1 1 OFF 2 1 1 1 ON 1 1 OFF
     

    Sample Output
    OFF ON -1


    DLX简单搜索。纠结了好久,行为2*m,每个开关ON,OFF两种状态,列为n,代表灯的状态,然后依照反复覆盖搜索。不须要估价函数,用一个vis数组记录开关状态即可。

    代码:

    /* ***********************************************
    Author :rabbit
    Created Time :2014/4/9 17:58:16
    File Name :7.cpp
    ************************************************ */
    #pragma comment(linker, "/STACK:102400000,102400000")
    #include <stdio.h>
    #include <iostream>
    #include <algorithm>
    #include <sstream>
    #include <stdlib.h>
    #include <string.h>
    #include <limits.h>
    #include <string>
    #include <time.h>
    #include <math.h>
    #include <queue>
    #include <stack>
    #include <set>
    #include <map>
    using namespace std;
    #define INF 0x3f3f3f3f
    #define eps 1e-8
    #define pi acos(-1.0)
    typedef long long ll;
    struct DLX{
        const static int maxn=200010;
        #define FF(i,A,s) for(int i = A[s];i != s;i = A[i])
        int L[maxn],R[maxn],U[maxn],D[maxn];
        int size,col[maxn],row[maxn],s[maxn],H[maxn];
        bool vis[1200];
        int ans[maxn],cnt;
        void init(int m){
            for(int i=0;i<=m;i++){
                L[i]=i-1;R[i]=i+1;U[i]=D[i]=i;s[i]=0;
            }
            memset(H,-1,sizeof(H));
            L[0]=m;R[m]=0;size=m+1;
            memset(vis,0,sizeof(vis));
        }
        void link(int r,int c){
             U[size]=c;D[size]=D[c];U[D[c]]=size;D[c]=size;
             if(H[r]<0)H[r]=L[size]=R[size]=size;
             else {
                 L[size]=H[r];R[size]=R[H[r]];
                 L[R[H[r]]]=size;R[H[r]]=size;
             }
             s[c]++;col[size]=c;row[size]=r;size++;
         }
        void del(int c){//精确覆盖
            L[R[c]]=L[c];R[L[c]]=R[c];  
            FF(i,D,c)FF(j,R,i)U[D[j]]=U[j],D[U[j]]=D[j],--s[col[j]];  
        }  
        void add(int c){  //精确覆盖
            R[L[c]]=L[R[c]]=c;  
            FF(i,U,c)FF(j,L,i)++s[col[U[D[j]]=D[U[j]]=j]];  
        }  
        bool dfs(int k){//精确覆盖
            if(!R[0]){  
                cnt=k;return 1;  
            }  
            int c=R[0];FF(i,R,0)if(s[c]>s[i])c=i;  
            del(c);  
            FF(i,D,c){  
                FF(j,R,i)del(col[j]);  
                ans[k]=row[i];if(dfs(k+1))return true;  
                FF(j,L,i)add(col[j]);  
            }  
            add(c);  
            return 0;
        }  
        void remove(int c){//反复覆盖
            FF(i,D,c)L[R[i]]=L[i],R[L[i]]=R[i];
        }
         void resume(int c){//反复覆盖
             FF(i,U,c)L[R[i]]=R[L[i]]=i;
         }
        int A(){//估价函数
            int res=0;
            memset(vis,0,sizeof(vis));
            FF(i,R,0)if(!vis[i]){
                    res++;vis[i]=1;
                    FF(j,D,i)FF(k,R,j)vis[col[k]]=1;
                }
            return res;
        }
        bool dance(int now){//反复覆盖
            if(R[0]==0)return 1;
                int temp=INF,c;
                FF(i,R,0)if(temp>s[i])temp=s[i],c=i;
                FF(i,D,c){
                    if(vis[row[i]^1])continue;
                    vis[row[i]]=1;remove(i);
                    FF(j,R,i)remove(j);
                    if(dance(now+1))return 1;
                    FF(j,L,i)resume(j);
                    resume(i);vis[row[i]]=0;
                }
                return 0;
        }
    }dlx;
    int main(){
        int n,m;
        while(~scanf("%d%d",&n,&m)){
            dlx.init(n);
            for(int i=1;i<=n;i++){
                int a,b;char str[44];
                scanf("%d",&a);
                while(a--){
                    scanf("%d%s",&b,str);
                    if(str[1]=='N')dlx.link((b-1)<<1,i);
                    else dlx.link((b-1)<<1|1,i);
                }
            }
            if(!dlx.dance(0))puts("-1");
            else{
                if(!dlx.vis[1])printf("ON");else printf("OFF");
                for(int i=2;i<(m<<1);i+=2){
                    if(!dlx.vis[i])printf(" OFF");else printf(" ON");
                }
    			puts("");
            }
        }
        return 0;
    }
    
    
    


  • 相关阅读:
    [示例] Firemonkey 面包屑导航
    [试玩] FMXLinux (Firemonkey for Linux) Linux 桌面开发(第三方插件)
    [修正] Firemonkey SpeedButton 鼠标移开按钮后 IsPressed 为 False 的问题
    [笔记] FireDAC DataSet 导入及导出 JSON
    [笔记] 升級到 Delphi 10.2 Tokyo 笔记
    [示例] 用代码设置 ListView 颜色 (只适用 Win 平台,无需修改官方源码)
    [上架] iOS 上架更新版本号建议
    [教学] Delphi IDE 文件搜寻功能
    Loadrunner相关问题
    数据导出excel数据丢失
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/5040926.html
Copyright © 2020-2023  润新知