• tensorboard 实现图表展示


    tensor_board.py

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    
    """
     @file tensor_board.py
    """
    
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    max_steps = 1000
    learning_rate = 0.001
    dropout = 0.9
    data_dir = 'MNIST_data'
    log_dir = 'mnist_with_summaries_log'
    
    mnist = input_data.read_data_sets(data_dir, one_hot = True)
    sess = tf.InteractiveSession()
    
    with tf.name_scope('input'):
        x = tf.placeholder(tf.float32, [None, 784], name='x-input')
        y_ = tf.placeholder(tf.float32, [None, 10], name ='y-input')
    
    with tf.name_scope('input_reshape'):
        image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
        tf.summary.image('input', image_shaped_input, 10)
    
    def weight_variable(shape):
        initial = tf.truncated_normal(shape, stddev=0.1)
        return tf.Variable(initial)
    
    def biases_variable(shape):
        initial = tf.constant(0.1, shape=shape)
        return tf.Variable(initial)
    
    def variable_summaries(var):
        with tf.name_scope('summaries'):
            mean = tf.reduce_mean(var)
            tf.summary.scalar('mean', mean)
            with tf.name_scope('stddev'):
                stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
            tf.summary.scalar('stddev', stddev)
            tf.summary.scalar('max', tf.reduce_max(var))
            tf.summary.scalar('min', tf.reduce_min(var))
            tf.summary.histogram('histogram', var)
    
    def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
        with tf.name_scope(layer_name):
            with tf.name_scope('weights'):
                weights = weight_variable([input_dim, output_dim])
                variable_summaries(weights)
            with tf.name_scope('biases'):
                biases = biases_variable([output_dim])
                variable_summaries(biases)
            with tf.name_scope('Wx_plus_b'):
                preactivate = tf.matmul(input_tensor, weights) + biases
                tf.summary.histogram('preactivate', preactivate)
            activations = act(preactivate, name='activation')
            tf.summary.histogram('activations', activations)
            return activations
    
    hidden1 = nn_layer(x, 784, 500, 'layer1')
    
    with tf.name_scope('dropout'):
        keep_prob = tf.placeholder(tf.float32)
        tf.summary.scalar('dropout_keep_probability', keep_prob)
        dropped = tf.nn.dropout(hidden1, keep_prob)
    
    y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)
    
    with tf.name_scope('cross_entropy'):
        diff = tf.nn.softmax_cross_entropy_with_logits(logits=y, labels=y_)
        with tf.name_scope('total'):
            cross_entropy = tf.reduce_mean(diff)
    tf.summary.scalar('cross_entropy', cross_entropy)
    
    with tf.name_scope('train'):
        train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
    with tf.name_scope('accuracy'):
        with tf.name_scope('correct_prediction'):
            correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
        with tf.name_scope('accuracy'):
            accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    tf.summary.scalar('accuracy', accuracy)
    
    merged = tf.summary.merge_all()
    train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
    test_writer = tf.summary.FileWriter(log_dir + '/test')
    tf.global_variables_initializer().run()
    
    def feed_dict(train):
        if train:
            xs, ys = mnist.train.next_batch(100)
            k = dropout
        else:
            xs, ys = mnist.test.images, mnist.test.labels
            k = 1.0
        return {x: xs, y_: ys, keep_prob: k}
    
    saver = tf.train.Saver()
    for i in range(max_steps):
        if i % 10 == 0:
            summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
            test_writer.add_summary(summary, i)
            print('Accuracy at step %s: %s' % (i, acc))
        else:
            if i % 100 == 99:
                run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
                run_metadata = tf.RunMetadata()
                summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True), options=run_options, run_metadata=run_metadata)
                train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
                train_writer.add_summary(summary, i)
                saver.save(sess, log_dir + "/model.ckpt", i)
                print('Adding run metadata for', i)
            else:
                summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
                train_writer.add_summary(summary, i)
    train_writer.close()
    test_writer.close()
    
    if __name__ == '__main__':
        #tensorboard --logdir=mnist_with_summaries_log --port=8008
        pass
    View Code

    生成图表: 

    tensorboard --logdir=mnist_with_summaries_log --port=8008

      

  • 相关阅读:
    样条之CatmullRom
    分形之树(Tree)
    B样条
    样条之贝塞尔(Bezier)
    插值与样条
    windows 下的Python虚拟环境(vitrualen)pycharm创建Django项目
    VS2010专业版和旗舰版(中文版)下载
    PHP课程环境安装总结文档
    原码、反码、补码知识详细讲解(此作者是我找到的讲的最细最明白的一个)
    C语言中size_t类型详细说明【转载】
  • 原文地址:https://www.cnblogs.com/yuanzhenliu/p/9549869.html
Copyright © 2020-2023  润新知