• Projectsimage_match3图像特征匹配调试记录


    D:文件及下载相关文档Visual Studio 2010Projectsimage_match3image_match
    #include "opencv2/core/core.hpp"
    #include "highgui.h"
    #include "opencv2/imgproc/imgproc.hpp"
    #include "opencv2/features2d/features2d.hpp"
    #include "opencv2/nonfree/nonfree.hpp"
    #include "opencv2/legacy/legacy.hpp"
    
    using namespace cv;
    using namespace std;
    
    int main(int argc, char** argv)
    {
       //待匹配的两幅图像,其中img1包括img2,也就是要从img1中识别出img2
       //Mat img1 = imread("book_in_scene.png");
       //Mat img2 = imread("book2.png");
       Mat img1 = imread("003.png");
       Mat img2 = imread("004.png");
    
       Mat image01;
       Mat image02;
       cvtColor(img1,image01,CV_RGB2GRAY);
       cvtColor(img2,image02,CV_RGB2GRAY);
       SIFT sift1, sift2;
    
       vector<KeyPoint> key_points1, key_points2;
    
       Mat descriptors1, descriptors2, mascara;
    
       sift1(img1,mascara,key_points1,descriptors1);
       sift2(img2,mascara,key_points2,descriptors2);
       
       //实例化暴力匹配器——BruteForceMatcher
       BruteForceMatcher<L2<float>> matcher;  
       //定义匹配器算子
       vector<DMatch>matches;  
       //实现描述符之间的匹配,得到算子matches
       matcher.match(descriptors1,descriptors2,matches);
    
       //提取出前3个最佳匹配结果
       nth_element(matches.begin(),     //匹配器算子的初始位置
           matches.begin()+9,     // 排序的数量
           matches.end());       // 结束位置
       //剔除掉其余的匹配结果
       matches.erase(matches.begin()+10, matches.end());
    
       namedWindow("SIFT_matches");  
       Mat img_matches;  
       //在输出图像中绘制匹配结果
       drawMatches(img1,key_points1,         //第一幅图像和它的特征点
           img2,key_points2,      //第二幅图像和它的特征点
           matches,       //匹配器算子
           img_matches,      //匹配输出图像
           Scalar(255,255,255));     //用白色直线连接两幅图像中的特征点
       imshow("SIFT_matches",img_matches);
    
        vector<Point2f> imagePoints1,imagePoints2;
        for(int i=0;i<10;i++)
        {
            imagePoints1.push_back(key_points1[matches[i].queryIdx].pt);
            imagePoints2.push_back(key_points2[matches[i].trainIdx].pt);
        }
    
       Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
       ////也可以使用getPerspectiveTransform方法获得透视变换矩阵,不过要求只能有4个点,效果稍差  
       //Mat homo=getPerspectiveTransform(imagePoints1,imagePoints2);     
       cout<<"变换矩阵为:
    "<<homo<<endl<<endl;//输出映射矩阵  
       //图像配准  
       Mat imageTransform1,imageTransform2;
       warpPerspective(image01,imageTransform1,homo,Size(image02.cols,image02.rows));
       imshow("经过透视矩阵变换后",imageTransform1);
       waitKey(0);
    
       return 0;
    }
    View Code

     Mat img1 = imread("003.png");
     Mat img2 = imread("004.png");

    测试两个方向拍摄的熊娃娃:

    对海面舰船目标的MUSIC高精度定位方法研究(图文) - 期刊论文网 http://www.pinjiao.com/lunwenqikan/kejixiaolunwen/lunwen21906.html

  • 相关阅读:
    NSMutableURLRequest,在POST方式下传递参数
    IOS开发学习笔记(2)-----UIButton 详解
    IOS开发学习笔记(1)-----UILabel 详解
    ios非UTF-8格式的网页解析
    ios 使用json
    IOS下WEBVIEW 的javascript数组与json定义 及交互
    Objective-C学习之解析XML
    iPhone HTTP获得XML并使用GDataXML解析
    PS学习笔记(05)
    PS学习笔记(04)
  • 原文地址:https://www.cnblogs.com/wxl845235800/p/8677569.html
Copyright © 2020-2023  润新知