• 【集成学习】sklearn中xgboot模块中fit函数参数详解(fit model for train data)


    参数解释,后续补上。

      1 # -*- coding: utf-8 -*-
      2 """
      3 ###############################################################################
      4 # 作者:wanglei5205
      5 # 邮箱:wanglei5205@126.com
      6 # 代码:http://github.com/wanglei5205
      7 # 博客:http://cnblogs.com/wanglei5205
      8 # 目的:学习xgboost的XGBClassifier函数
      9 # 官方API文档:http://xgboost.readthedocs.io/en/latest/python/python_api.html#module-xgboost.training
     10 ###############################################################################
     11 """
     12 ### load module
     13 from sklearn import datasets
     14 from sklearn.model_selection import train_test_split
     15 from xgboost import XGBClassifier
     16 
     17 ### load datasets
     18 digits = datasets.load_digits()
     19 
     20 ### data analysis
     21 print(digits.data.shape)
     22 print(digits.target.shape)
     23 
     24 ### data split
     25 x_train,x_test,y_train,y_test = train_test_split(digits.data,
     26                                                  digits.target,
     27                                                  test_size = 0.3,
     28                                                  random_state = 33)
     29 
     30 ### fit model for train data
     31 # fit函数参数:eval_set=[(x_test,y_test)]  评估数据集,list类型
     32 # fit函数参数:eval_metric="mlogloss"      评估标准(多分类问题,使用mlogloss作为损失函数)
     33 # fit函数参数:early_stopping_rounds= 10   如果模型的loss十次内没有减小,则提前结束模型训练
     34 # fit函数参数:verbose = True              True显示,False不显示
     35 model = XGBClassifier()
     36 model.fit(x_train,
     37           y_train,
     38           eval_set = [(x_test,y_test)],  # 评估数据集
     39 
     40           eval_metric = "mlogloss",
     41           early_stopping_rounds = 10,
     42           verbose = True)
     43 
     44 ### make prediction for test data
     45 y_pred = model.predict(x_test)
     46 
     47 ### model evaluate
     48 from sklearn.metrics import accuracy_score
     49 accuracy = accuracy_score(y_test,y_pred)
     50 print("accuarcy: %.2f%%" % (accuracy*100.0))
     51 """
     52 95.0%
     53 """
  • 相关阅读:
    Jzoj2682 最长双回文串
    Jzoj2682 最长双回文串
    【hdu3853】Loops
    【tyvj1015】【caioj1060】公路乘车
    【luogu1064】金明的预算方案
    【bzoj1260】【CQOI2007】涂色paint
    【UVa1629】Cake slicing
    【NYOJ746】整数划分(四)
    【NYOJ 15】括号匹配2
    【poj2955】Brackets
  • 原文地址:https://www.cnblogs.com/wanglei5205/p/8579218.html
Copyright © 2020-2023  润新知