• 9-28 解题报告


    第一题:fibo矩阵快速幂

    无压力,给信心的

    type
            matrix=array[1..2,1..2] of qword;
    var
            c,cc:matrix;
            t,bili:longint;
            n,p:int64;
            function multiply(x,y:matrix):matrix;
            var
            temp:matrix;
            begin
                    temp[1,1]:=(x[1,1]*y[1,1]+x[1,2]*y[2,1]) mod p;
                    temp[1,2]:=(x[1,1]*y[1,2]+x[1,2]*y[2,2]) mod p;
                    temp[2,1]:=(x[2,1]*y[1,1]+x[2,2]*y[2,1]) mod p;
                    temp[2,2]:=(x[2,1]*y[1,2]+x[2,2]*y[2,2]) mod p;
            exit(temp);
            end;
    
            function getcc(n:int64):matrix;
            var
            temp:matrix;
            t:int64;
            begin
                    if n=1 then exit(c);
                    t:=n div 2;
                    temp:=getcc(t);
                    temp:=multiply(temp,temp);
            if odd(n) then exit(multiply(temp,c))
            else exit(temp);
            end;
    
    
            procedure init;
            begin
            readln(n,p);
            c[1,1]:=1;
            c[1,2]:=1;
            c[2,1]:=1;
            c[2,2]:=0;
            if n=0 then
            begin
                writeln(0);
                exit;
            end;
            if n=1 then
            begin
                    writeln(1 mod p);
                    exit;
            end;
            if n=2 then
            begin
                    writeln(1 mod p);
                    exit;
            end;
            cc:=getcc(n-2);
            end;
    
            procedure work;
            begin
                    writeln((cc[1,1]+cc[1,2]) mod p);
                    end;
    
            begin
                    assign(input,'eins.in');
                    reset(input);
                    assign(output,'eins.out');
                    rewrite(output);
                    readln(t);
                    for bili:=1 to t do
                    begin
                    init;
                    if (n>2) then work;
                    end;
                    close(input);
                    close(output);
            end.

    第二题:树状数组
    把求和变成求xor,剩下模板,再给信心

    var
            a,f:array[0..200010] of longint;
            l,r,x,y,z,m,n,i,j:longint;
    
            function lowbit(x:longint):longint;
            begin
                    exit(x and (-x));
                    end;
    
            procedure build(pos,x:longint);
            var i:longint;
            begin
                    i:=pos;
            while i<=n do
            begin
                    f[i]:=f[i] xor x;
                    inc(i,lowbit(i));
            end;
            end;
    
            function sum(x:longint):longint;
            var
            tail,s:longint;
            begin
                    tail:=x;
                    s:=0;
                    while tail>0 do
                    begin
                            s:=s xor f[tail];
                            dec(tail,lowbit(tail));
                    end;
                    sum:=s;
            end;
    
            procedure change(x,y:longint);
            var p:longint;
            begin
            p:=x;
            while p<=n do
            begin
                    f[p]:=f[p] xor a[x] xor y;
                    inc(p,Lowbit(p));
            end;
            a[x]:=y;
            end;
    
            begin
            assign(input,'zwei.in');
            reset(input);
            assign(output,'zwei.out');
            rewrite(output);
                    readln(n,m);
                    for i:=1 to n do
                    begin
                            read(a[i]);
                            build(i,a[i]);
                    end;
    
                    for i:=1 to m do
                    begin
                            read(z,x,y);
                            if z=0 then change(x,y);
                            if z=1 then writeln(sum(y) xor sum(x-1));
                    end;
                    close(input);
                    close(output);
            end.

    第三题:
    欧拉函数,写了好几次才过,后来发现快速幂写错了(捂脸= =)

    var
            i,t,n,mo,ans,k:int64;
            bilibili:longint;
    
    
    
            function gcd(x,y:int64):int64;
            begin
                    if y=0 then exit(x);
                    exit(gcd(y,x mod y));
            end;
    
            function phi(k:int64):int64;
            var i,ret:int64;
            begin
                    ret:=1;
                    i:=2;
                    while i*i<=k do
                    begin
                            if k mod i=0 then
                            begin
                                    ret:=ret*(i-1);
                                    k:=k div i;
                                    while k mod i=0 do begin ret:=ret*i; k:=k div i; end;
                            end;
                            inc(i);
                    end;
                    if k>1 then ret:=ret*(k-1);
                    exit(ret);
            end;
    
            function pow(a,b:int64):int64;
            var ret,i:int64;
            begin
                    ret:=1;
                    while b<>0 do
                    begin
                            if b and 1<>0 then begin ret:=(ret*a) mod mo;
    
                            end;
                            a:=(a*a) mod mo;
                            b:=b>>1;
                    end;
                    exit(ret mod mo);
            end;
    
            begin
                assign(input,'drei.in');
                reset(input);
                assign(output,'drei.out');
                rewrite(output);
                    readln(t);
                    for bilibili:=1 to t do
                    begin
                            readln(n,mo);
                            if mo=1 then begin writeln(-1); continue; end;
                            if n=0 then begin writeln(-1); continue; end;
                            if n=1 then begin writeln(1); continue; end;
                            if gcd(n,mo)>1 then begin writeln(-1); continue; end;
                            ans:=phi(mo);
                            k:=ans;
                            i:=2;
                            while i*i<=k do
                            begin
                                    if k mod i=0 then
                                    begin
                                            if (pow(n,i)=1) and (i<ans) then ans:=i;
                                            if (pow(n,k div i)=1) and (k div i<ans) then ans:=k div i;
                                    end;
                                    inc(i);
                            end;
                            writeln(ans);
                    end;
                close(input);
                close(output);
            end.

     喜欢就收藏一下,vic私人qq:1064864324,加我一起讨论问题,一起进步^-^

  • 相关阅读:
    决策树算法之ID3
    MSE与MAE的区别与选择
    (九)关键变量发掘技术
    (八)数据集切割
    (七)数据精简之(数据值精简和字段的精简)
    (六)数据精简之(数据记录精简)
    (五)数据编码是干什么
    (四)数据清洗主要工作
    pip-window安装
    CMDB学习之六 --客户端请求测试,服务端api优化
  • 原文地址:https://www.cnblogs.com/victorslave/p/4845424.html
Copyright © 2020-2023  润新知