• MR框架-->Word4


    • 用户流量排序

    实现编码:

    FlowBean类:把上行流量和下行流量以及总流量封装到一个bean中进行描述,注意要实现hadoop的序列化接口Writable

    package com.hp.mr;
    
    import java.io.DataInput;
    import java.io.DataOutput;
    import java.io.IOException;
    
    import org.apache.hadoop.io.Writable;
    
    public class FlowBean implements Writable {
        //私有属性
        private int upFlow;
        private int downFlow;
        private int sumFlow;
        //无参构造方法
        public FlowBean() {
            
        }
        //有参构造
        public FlowBean(int upFlow,int downFlow) {
            this.upFlow = upFlow;
            this.downFlow = downFlow;
            this.sumFlow = upFlow + downFlow;
        }
        //get set方法
        public int getUpFlow() {
            return upFlow;
        }
    
        public void setUpFlow(int upFlow) {
            this.upFlow = upFlow;
        }
    
        public int getDownFlow() {
            return downFlow;
        }
    
        public void setDownFlow(int downFlow) {
            this.downFlow = downFlow;
        }
    
        public int getSumFlow() {
            return sumFlow;
        }
    
        public void setSumFlow(int sumFlow) {
            this.sumFlow = sumFlow;
        }
        //序列化
        @Override
        public void readFields(DataInput in) throws IOException {
            upFlow = in.readInt();
            downFlow = in.readInt();
        }
        //反序列化
        @Override
        public void write(DataOutput out) throws IOException {
            out.write(upFlow);
            out.write(downFlow);
            
        }
        @Override
        public String toString() {
            return upFlow + "	" +  downFlow + "	" + sumFlow ;
        }
    
    }

    需要注意的是:用户流量的上行和下行流量总和的思路跟之前的都一样,而FlowBean的使用方法,把多个需要统计的信息用Bean对象来封装,注意Mapper和Reducer的KEY和VALUE的数据类型

    Mapper类:

    package com.hp.mr;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.LongWritable;
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Mapper;
    
    public class FlowMapper extends Mapper<LongWritable, Text, Text, FlowBean> {
        @Override
        protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, FlowBean>.Context context)
                throws IOException, InterruptedException {
            //获取一行数据
            String line = value.toString();
            //指定规则截取
            String[] words = line.split("	");
            //获取有效数据
            String phone = words[1];
            String upFlow = words[2];
            String downFlow = words[3];
            int up = Integer.parseInt(upFlow);
            int down =  Integer.parseInt(downFlow);
            FlowBean fs = new FlowBean(up, down);
            //写入上下文
            context.write(new Text(phone),fs);
        }
    }

    Reducer类:

    package com.hp.mr;
    
    import java.io.IOException;
    
    import org.apache.hadoop.io.Text;
    import org.apache.hadoop.mapreduce.Reducer;
    
    public class FlowReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
        @Override
        protected void reduce(Text key, Iterable<FlowBean> values, Reducer<Text, FlowBean, Text, FlowBean>.Context context)
                throws IOException, InterruptedException {
            //定义空变量
            int up = 0;
            int down = 0;
            //获取上行下行流量
            FlowBean fs = new FlowBean();
            //上下流量
            /*int upFlow = fs.getUpFlow();
            int downFlow = fs.getDownFlow();*/
            for (FlowBean flowBean : values) {
                down += flowBean.getUpFlow();
                up += flowBean.getDownFlow();
            }
            FlowBean fl = new FlowBean(up, down);
            //写入上下文
            context.write(key, fl);
        }
    }

    Submitter类:

    package com.hp.mr;
    
    import java.io.IOException;
    
    import org.apache.hadoop.conf.Configuration;
    import org.apache.hadoop.fs.FileSystem;
    import org.apache.hadoop.fs.Path;
    import org.apache.hadoop.io.Text;
    
    import org.apache.hadoop.mapreduce.Job;
    import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
    import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
    public class Submitter {
        public static void main(String[] args) throws Exception {
            //添加配置文件
            Configuration conf = new Configuration();
            //创建FileSystem对象
            FileSystem fs = FileSystem.get(conf);
            //判断输出路径是否存在
            if(fs.exists(new Path(args[1]))) {
                fs.delete(new Path(args[1]),true);
            }
            //创建Job对象
            Job job = Job.getInstance(conf);
            //设置提交主类
            job.setJarByClass(Submitter.class);
            //设置Mapper相关的参数
            job.setMapperClass(FlowMapper.class);
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(FlowBean.class);
            //设置Reducer类相关的参数
            job.setReducerClass(FlowReducer.class);
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(FlowBean.class);
            //设置输入路劲
            FileInputFormat.setInputPaths(job, new Path(args[0]));
            //设置输出路径
            FileOutputFormat.setOutputPath(job, new Path(args[1]));
            //提交任务
            job.waitForCompletion(true);
        }
    }
  • 相关阅读:
    SQL SERVER怎样将某个服务器上面的数据自动备份到另一台服务器上面(异地备份)
    jboss eap 6.2 ear包 下使用log4j日志
    配置jboss EAP 6.4 数据库连接超时时间
    java解析XML
    META-INF下文件读取
    Java J2EE读取配置文件
    EJB Remote/Local 绑定和JNDI Lookup
    Cypress web自动化27-Debugging调试你的代码
    Cypress web自动化26-mochawesome-merge合并json报告
    Cypress web自动化25-生成mochawesome-report合并报告
  • 原文地址:https://www.cnblogs.com/wyk1/p/13964811.html
Copyright © 2020-2023  润新知