• Linux V4L2之camera


    一、硬件知识

    1. 摄像头硬件结构和工作原理,如图1&图2 

      

      外部光线穿过lens镜头,经过红外滤光片后光学图像投射到传感器上,然后光学图像被转换成电信号,电信号再经过模数转换变为数字信号,数字信号经过DSP加工处理,

    再被送到接收端进行处理,最终转换成屏幕上能够看到的图像。 其中:

    1)滤光片作用:

      a. 滤除红外线,滤除对可见光有干扰的红外光,使成像效果更清晰。

      b. 修整进来的光线,感光芯片由感光体(CELL)构成,最好的光线是直射进来,但为了怕干扰到邻近感光体

               就需要对光线加以修整,因此那片滤光片不是玻璃,而是石英片,利用石英的物理偏光特性,把进来

               的光线保留直射部份,反射掉斜射部份,避免去影响旁边的感光点。

    2)常见的sensor传感器主要有两种:

      a. CCD传感器(Chagre Couled Device),即电荷耦合器。

      b. CMOS传感器(Complementary Metal-Oxide Semiconductor),即互补性金属氧化物半导体。

              CCD的优势在于成像质量好,但是制造工艺复杂,成本高昂,且耗电高。在相同分辨率下,CMOS价格

         比CCD便宜,但图像质量相比CCD来说要低一些。CMOS影像传感器相对CCD具有耗电低的优势,加上随

              着工艺技术的进步,CMOS的画质水平也不断地在提高,所以目前市面上的手机摄像头都采用CMOS传感器。

    3)DSP (DIGITAL SIGNAL PROCESSING):

      主要是通过一系列复杂的数学算法运算,对数字图像信号参数进行优化处理,并把处理后的信号通过USB等接口传到PC等设备。结构框架:  ISP(image signal processor)(镜像信号处理器)、JPEG encoder(JPEG图像解码器)、USB device controller(USB设备控制器)

      对于低分辨率来说(300W像素以下), 一般摄像头自带DSP/ISP处理模块,提供简单的自动白平衡、 gamma、sharpness等功能,而高分辨率或者需要提供更增强功能时,可以使用处理器自带的ISP模块(前提是处理器有)。

    一般ISP支持输出YUV、RGB、JPEG格式。

    2. 摄像头引脚作用&硬件连接:  

      目前摄像头接口主要采用MIPI CSI & DVP, 前者是串行(多组差分信号线), 后者是并口传输(8/10bit)。 图3以DVP接口介绍各个引脚作用及硬件连接:

      

    DVP分为三个部分:

    1)输入总线:

       a. data为sensor的数据管脚,可输出8/10bit并口数据到处理器接受端。

       b. VSYNC为帧同步信号管脚,一个VSYNC信号结束表示一个画面的数据已经传输完毕。

       c. HSYNC为行同步信号管脚,一个HSYNC信号结束表示一行的数据已经传输完毕。

       p. PCLK为像素同步信号管脚,一个PCLK信号结束表示一个像素的数据(大小取决格式)已经传输完毕。

      以上管脚的关系如下图:

                 

    2)输出总线 :

       a. PDN(power down enable), camera使能管脚,当PDN=1时, 一切对camera操作都是无效的。

       b. RESET, 复位管脚, 低电平有效。

       c. XCLK(MCLK), sensor的工作时钟管脚,可由外部晶振或者处理器提供。

       d. I2C总线, 处理器与sensor通信管脚, 用于配置sensor。

    3)Power:

       a. AVDD 模拟电压

       b. DOVDD GPIO口数字电压

       c. DVDD 核工作电压

    二、成像原理

      本节主要讲解目前主流的bayer格式图片的成像原理, bayer格式图片是伊士曼·柯达公司科学家Bryce Bayer发明的,Bryce Bayer所发明的拜耳阵列被广泛运用数字图像。

       对于彩色图像,需要采集最基本的颜色,如RGB三种颜色,最简单的方法就是用滤镜的方法,红色的滤镜透过红色的波长,绿色的滤镜透过绿色的波长,蓝色的滤镜透过蓝色的波长。如果要同时采集三个基本色,则需要三块滤镜,这样价格昂贵,且不好制造,因为三块滤镜都必须保证每一个像素点都对齐。当用bayer格式的时候,很好的解决了这个问题。bayer 格式在每个像素(pixel)上只设置一种颜色滤镜,外部光线在每个像素点上存储是单色的, 因此经过ADC转换出来的原始数据称为RAW RGB DATA,通过分析人眼对颜色的感知发现,人眼对绿色比较敏感,所以一般bayer格式的图片绿色格式的像素是是R和B像素的和。

      

      当Image Sensor往外逐行输出数据时,像素的序列为GRGRGR.../BGBGBG...(交替)。这样阵列的设计,使得RGB传感器为全色传感器的1/3。

      每一个像素仅仅包括了光谱的一部分,必须通过插值来实现每个像素的RGB值。为了从Bayer格式得到每个像素的RGB格式,我们需要通过插值填补缺失的2个色彩。插值的方法有很多(包括领域、线性、3*3等),速度与质量权衡,最好是线性插值补偿算法。

      从图5 Sensor 像素阵列来看, 存在4中分布格式:

                           

      

      对于图6(a)(b)来说, G像素的R、B分量分别取两个邻域的平均値,由于存在(a)(b)两种分布情况,所以直接去4个相邻域的平均値既是G像素的R&B分量。

      对于图6(c)来说,R像素的G分量可以取4个相邻域的平均值,B分量取外围4个域的平均值。

      对于图6(d)来说,B像素的G分量可以取4个相邻域的平均值,R分量取外围4个域的平均值。

      当然, RAW RGB DATA也可以转换成YUV格式或者 先转成RGB再转换YUV,就不详解了......

    三、V4L2软件架构

    1. 概述

             Video4 for Linux 2是Linux内核中关于视频设备的内核驱动框架,为上层的访问底层的视频设备提供了统一的接口。凡是内核中的子系统都有抽象底层硬件的差异,为上层提供统一的接口和提取出公共代码避免代码冗余等。 V4L2支持三类设备:视频输入输出设备、VBI设备和radio设备(其实还支持更多类型的设备,暂不讨论),分别会在/dev目录下产生videoX、radioX和vbiX设备节点。 图7是V4L2在linux系统中的结构图:

      

    Linux系统中视频输入设备主要包括以下四个部分:

      字符设备驱动:V4L2本身就是一个字符设备,具有字符设备所有的特性,暴露接口给用户空间;

      V4L2驱动核心:主要是构建一个内核中标准视频设备驱动的框架,为视频操作提供统一的接口函数;

      平台V4L2设备驱动:在V4L2框架下,根据平台自身的特性实现与平台相关的V4L2驱动部分,包括注册video_device和v4l2_dev;

      具体的sensor驱动:主要上电、提供工作时钟、视频图像裁剪、流IO开启等,实现各种设备控制方法供上层调用并注册v4l2_subdev。

    2. 详解V4L2框架

      v4L2的核心源码位于drivers/media/v4l2-core,根据功能可以划分为四类:

      字符设备模块:由v4l2-dev.c实现,主要作用申请字符主设备号、注册class和提供video device注册注销等相关函数;

      V4L2基础框架:由v4l2-device.c、v4l2-subdev.c、v4l2-fh.c、v4l2-ctrls.c等文件构建V4L2基础框架;

      videobuf管理:由videobuf2-core.c、videobuf2-dma-contig.c、videobuf2-dma-sg.c、videobuf2-memops.c、videobuf2-vmalloc.c、v4l2-mem2mem.c等文件实现,完成videobuffer的分配、管理和注销;

      Ioctl框架:由v4l2-ioctl.c文件实现,构建V4L2ioctl的框架。

    2.1 V4L2基础框架如图8:

      

      上图V4L2框架是一个标准的树形结构,v4l2_device充当了父设备,通过链表把所有注册到其下的子设备管理起来,这些设备可以是GRABBER、VBI或RADIO。V4l2_subdev是子设备,v4l2_subdev结构体包含了对设备操作的ops和ctrls,这部分代码和硬件相关,需要驱动工程师根据硬件实现控制上下电、读取ID、饱和度、对比度和视频数据流打开关闭等接口函数。Video_device用于创建子设备节点,把操作设备的接口暴露给用户空间。V4l2_fh是每个子设备的文件句柄,在打开设备节点文件时设置,方便上层索引到v4l2_ctrl_handler,v4l2_ctrl_handler管理设备的ctrls,这些ctrls(摄像头设备)包括调节饱和度、对比度和白平衡等。

             结构体v4l2_device、video_device、v4l2_subdev和v4l2_ctrl_handler是构成框架的主要元素,现分别介绍:

    1. struct v4l2_device :
        v4l2_device在v4l2框架中充当所有v4l2_subdev的父设备,管理着注册在其下的子设备
        
    struct v4l2_device {
        structlist_head subdevs;  //用链表管理注册的subdev
        charname[V4L2_DEVICE_NAME_SIZE];  //device 名字
        structkref ref;  //引用计数
        .........
    };
    
        可以看出v4l2_device的主要作用是管理注册在其下的子设备,方便系统查找引用到。
    v4l2_device的注册和注销:
        int v4l2_device_register(struct device*dev, struct v4l2_device *v4l2_dev)
        static void v4l2_device_release(struct kref *ref)
    
    2. struct v4l2_subdev :
        v4l2_subdev代表子设备,包含了子设备的相关属性和操作。结构体原型:
    
    struct v4l2_subdev {
        struct v4l2_device *v4l2_dev;  //指向父设备
        conststruct v4l2_subdev_ops *ops; //提供一些控制v4l2设备的接口
        conststruct v4l2_subdev_internal_ops *internal_ops; //向V4L2框架提供的接口函数
        structv4l2_ctrl_handler *ctrl_handler; //subdev控制接口
        charname[V4L2_SUBDEV_NAME_SIZE]; 
        struct video_device *devnode;  
        ..........
    };
    
        每个子设备驱动都需要实现一个v4l2_subdev结构体,v4l2_subdev可以内嵌到其它结构体中,也可以独立使用。
        结构体中包含了对子设备操作的成员v4l2_subdev_ops和v4l2_subdev_internal_ops
                struct v4l2_subdev_ops {
                    const struct v4l2_subdev_core_ops *core; //视频设备通用的操作:初始化、加载FW、上电和RESET等
                    const struct v4l2_subdev_tuner_ops *tuner; //tuner特有的操作
                    const struct v4l2_subdev_audio_ops *audio; //audio特有的操作
                    const struct v4l2_subdev_video_ops *video; //视频设备的特有操作:裁剪图像、开关视频流等
                    const struct v4l2_subdev_pad_ops *pad;
                    ..........
                };
                struct v4l2_subdev_internal_ops {
                    /* 当subdev注册时被调用,读取IC的ID来进行识别 */
                    int(*registered)(struct v4l2_subdev *sd);
                    void(*unregistered)(struct v4l2_subdev *sd);
                    /* 当设备节点被打开时调用,通常会给设备上电和设置视频捕捉FMT */
                    int(*open)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
                    int(*close)(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh);
                };
    
        视频设备通常需要实现core和video成员,这两个OPS中的操作都是可选的,但是对于视频流设备video->s_stream(开启或关闭流IO)必须要实现。v4l2_subdev_internal_ops是向V4L2框架提供的接口,只能被V4L2框架层调用。在注册或打开子设备时,进行一些辅助性操作。
        Subdev的注册和注销:
                            int v4l2_device_register_subdev(struct v4l2_device *v4l2_dev, struct v4l2_subdev *sd)
                            void v4l2_device_unregister_subdev(struct v4l2_subdev *sd)
    
    
    3. struct video_device
        video_device结构体用于在/dev目录下生成设备节点文件,把操作设备的接口暴露给用户空间
    
    struct video_device
    {
        const struct v4l2_file_operations *fops;  //V4L2设备操作集合
        struct cdev *cdev; //字符设备
    
        struct v4l2_device *v4l2_dev;
        struct v4l2_ctrl_handler *ctrl_handler;
    
        struct vb2_queue *queue; //指向video buffer队列
        int vfl_type;      /* device type */
    
        intminor;  //次设备号
    
        /*ioctl回调函数集,提供file_operations中的ioctl调用 */
        const struct v4l2_ioctl_ops *ioctl_ops;
        ..........
    };
        
        Video_device分配和释放, 用于分配和释放video_device结构体:
            struct video_device *video_device_alloc(void)
            void video_device_release(struct video_device *vdev)
        video_device注册和注销,实现video_device结构体的相关成员后,就可以调用下面的接口进行注册:
            static inline int __must_check video_register_device(struct video_device *vdev, inttype, int nr)
            void video_unregister_device(struct video_device*vdev);
                vdev:需要注册和注销的video_device;
                type:设备类型,包括VFL_TYPE_GRABBER、VFL_TYPE_VBI、VFL_TYPE_RADIO和VFL_TYPE_SUBDEV。
                nr:设备节点名编号,如/dev/video[nr]。
    
    4. struct v4l2_ctrl_handler
        v4l2_ctrl_handler是用于保存子设备控制方法集的结构体,结构体如下: 
    struct v4l2_ctrl_handler {
        struct list_head ctrls;
        struct list_head ctrl_refs;
        struct v4l2_ctrl_ref *cached;
        struct v4l2_ctrl_ref **buckets;
        v4l2_ctrl_notify_fnc notify;
        u16 nr_of_buckets;
        int error;
    };
    
        其中成员ctrls作为链表存储包括设置亮度、饱和度、对比度和清晰度等方法,可以通过v4l2_ctrl_new_xxx()函数创建具体方法并添加到链表ctrls。

    2.2 videobuf管理

      在讲解v4l2的buffer管理前,先介绍v4l2的IO访问, V4L2支持三种不同IO访问方式(内核中还支持了其它的访问方式,暂不讨论):

      read和write:是基本帧IO访问方式,通过read读取每一帧数据,数据需要在内核和用户之间拷贝,这种方式访问速度可能会非常慢;

      内存映射缓冲区(V4L2_MEMORY_MMAP):是在内核空间开辟缓冲区,应用通过mmap()系统调用映射到用户地址空间。这些缓冲区可以是大而连续DMA缓冲区、通过vmalloc()创建的虚拟缓冲区,或者直接在设备的IO内存中开辟的缓冲区(如果硬件支持);

      用户空间缓冲区(V4L2_MEMORY_USERPTR):是用户空间的应用中开辟缓冲区,用户与内核空间之间交换缓冲区指针。很明显,在这种情况下是不需要mmap()调用的,但驱动为有效的支持用户空间缓冲区,其工作将也会更困难。

      read和write方式属于帧IO访问方式,每一帧都要通过IO操作,需要用户和内核之间数据拷贝,而后两种是流IO访问方式,不需要内存拷贝,访问速度比较快。内存映射缓冲区访问方式是比较常用的方式。

      现以V4L2_MEMORY_MMAP简单介绍数据流通过程:

                 

       Camera sensor捕捉到图像数据通过并口或MIPI传输到CAMIF(camera interface),CAMIF可以对图像数据进行调整(翻转、裁剪和格式转换等)。然后DMA控制器设置DMA通道请求AHB将图像数据传到分配好的DMA缓冲区。待图像数据传输到DMA缓冲区之后,mmap操作把缓冲区映射到用户空间,应用就可以直接访问缓冲区的数据。而为了使设备支持流IO这种方式,v4l2需要实现对video buffer的管理,即实现:

    /* vb2_queue代表一个videobuffer队列,vb2_buffer是这个队列中的成员,vb2_mem_ops是缓冲内存的操作函数集,vb2_ops用来管理队列 */
    struct vb2_queue {
        enum v4l2_buf_type type;  //buffer类型
        unsigned int io_modes;  //访问IO的方式:mmap、userptr etc
        const struct vb2_ops *ops;  //buffer队列操作函数集合
        const struct vb2_mem_ops *mem_ops;  //buffer memory操作集合
        struct vb2_buffer *bufs[VIDEO_MAX_FRAME];  //代表每个frame buffer
        unsignedint num_buffers;  //分配的buffer个数
        ..........
    };
    
    
    /* vb2_mem_ops包含了内存映射缓冲区、用户空间缓冲区的内存操作方法 */
    struct vb2_mem_ops {
        void *(*alloc)(void *alloc_ctx, unsignedlong size);  //分配视频缓存
        void (*put)(void *buf_priv);  //释放视频缓存
    
        /* 获取用户空间视频缓冲区指针 */
        void *(*get_userptr)(void *alloc_ctx, unsigned long vaddr, unsignedlong size, int write);
        void (*put_userptr)(void *buf_priv);  //释放用户空间视频缓冲区指针
        /* 用于缓存同步 */
        void (*prepare)(void *buf_priv);
        void (*finish)(void *buf_priv);
        /* 缓存虚拟地址 & 物理地址 */
        void *(*vaddr)(void *buf_priv);
        void *(*cookie)(void *buf_priv);
    
        unsignedint (*num_users)(void *buf_priv);  //返回当期在用户空间的buffer数
        int (*mmap)(void *buf_priv, structvm_area_struct *vma);  //把缓冲区映射到用户空间
        ..............
    };
    
    /* mem_ops由kernel自身实现并提供了三种类型的视频缓存区操作方法:连续的DMA缓冲区、集散的DMA缓冲区以及vmalloc创建的缓冲区,分别由videobuf2-dma-contig.c、videobuf2-dma-sg.c和videobuf-vmalloc.c文件实现,可以根据实际情况来使用。*/
    
    
    /* vb2_ops是用来管理buffer队列的函数集合,包括队列和缓冲区初始化等 */
    struct vb2_ops {
        //队列初始化
        int(*queue_setup)(struct vb2_queue *q, const struct v4l2_format *fmt,
                           unsigned int *num_buffers, unsigned int*num_planes,
                           unsigned int sizes[], void *alloc_ctxs[]);
    
        //释放和获取设备操作锁
        void(*wait_prepare)(struct vb2_queue *q);
        void(*wait_finish)(struct vb2_queue *q);
    
        //对buffer的操作
        int(*buf_init)(struct vb2_buffer *vb);
        int(*buf_prepare)(struct vb2_buffer *vb);
        int(*buf_finish)(struct vb2_buffer *vb);
        void(*buf_cleanup)(struct vb2_buffer *vb);
    
        //开始/停止视频流
        int(*start_streaming)(struct vb2_queue *q, unsigned int count);
        int(*stop_streaming)(struct vb2_queue *q);
    
        //把VB传递给驱动,以填充frame数据
        void(*buf_queue)(struct vb2_buffer *vb);
    };

      

      一个frame buffer(vb2_buffer/v4l2_buffer)可以有三种状态:

        1. 在驱动的输入队列中,驱动程序将会对此队列中的缓冲区进行处理,用户空间通过IOCTL:VIDIOC_QBUF 把缓冲区放入到队列。对于一个视频捕获设备,传入队列中的缓冲区是空的,驱动会往其中填充数据;

        2. 在驱动的输出队列中,这些缓冲区已由驱动处理过,对于一个视频捕获设备,缓存区已经填充了视频数据,正等用户空间来认领;

        3. 用户空间状态的队列,已经通过IOCTL:VIDIOC_DQBUF传出到用户空间的缓冲区,此时缓冲区由用户空 间拥有,驱动无法访问。

      这三种状态的切换如下图所示:

                     

      

             最终落脚点的struct v4l2_buffer结构如下:

    struct v4l2_buffer {
        __u32 index;  //buffer 序号
        __u32 type;  //buffer类型
        __u32 bytesused;  //缓冲区已使用byte数
        structtimeval timestamp;  //时间戳,代表帧捕获的时间
    
        __u32 memory;  //表示缓冲区是内存映射缓冲区还是用户空间缓冲区
        union {
            __u32 offset;  //内核缓冲区的位置
            unsignedlong userptr;   //缓冲区的用户空间地址
            structv4l2_plane *planes;
            __s32 fd;
        } m;
        __u32 length;   //缓冲区大小,单位byte
    };

      当用户空间拿到v4l2_buffer,可以获取到缓冲区的相关信息。Byteused是图像数据所占的字节数,如果是V4L2_MEMORY_MMAP方式,m.offset是内核空间图像数据存放的开始地址,会传递给mmap函数作为一个偏移,通过mmap映射返回一个缓冲区指针p,p+byteused是图像数据在进程的虚拟地址空间所占区域;如果是用户指针缓冲区的方式,可以获取的图像数据开始地址的指针m.userptr,userptr是一个用户空间的指针,userptr+byteused便是所占的虚拟地址空间,应用可以直接访问

    2.3 Ioctl框架如图:

      

      用户空间通过打开/dev/目录下的设备节点,获取到文件的file结构体,通过系统调用ioctl把cmd和arg传入到内核。通过一系列的调用后最终会调用到__video_do_ioctl函数,然后通过cmd检索v4l2_ioctls[],判断是INFO_FL_STD还是INFO_FL_FUNC。如果是INFO_FL_STD会直接调用到视频设备驱动中video_device->v4l2_ioctl_ops函数集。如果是INFO_FL_FUNC会先调用到v4l2自己实现的标准回调函数,然后根据arg再调用到video_device->v4l2_ioctl_ops或v4l2_fh->v4l2_ctrl_handler函数集。

    四、用户空间访问 camera & 示例程序

    /* 
     *  V4L2 video capture example 
     * 
     *  This program can be used and distributed without restrictions. 
     * 
     *      This program is provided with the V4L2 API 
     * see http://linuxtv.org/docs.php for more information 
     */  
      
    #include <stdio.h>  
    #include <stdlib.h>  
    #include <string.h>  
    #include <assert.h>  
      
    #include <getopt.h>             /* getopt_long() */  
      
    #include <fcntl.h>              /* low-level i/o */  
    #include <unistd.h>  
    #include <errno.h>  
    #include <sys/stat.h>  
    #include <sys/types.h>  
    #include <sys/time.h>  
    #include <sys/mman.h>  
    #include <sys/ioctl.h>  
    #include <linux/videodev2.h>  
    
    #define CLEAR(x) memset(&(x), 0, sizeof(x))  
      
    enum io_method {  
            IO_METHOD_READ,  
            IO_METHOD_MMAP,  
            IO_METHOD_USERPTR,  
    };  
      
    struct buffer {  
            void   *start;  
            size_t  length;  
    };  
      
    static char            *dev_name;  
    static enum io_method   io = IO_METHOD_MMAP;  
    static int              fd = -1;  
    struct buffer          *buffers;  
    static unsigned int     n_buffers;  
    static int              out_buf;  
    static int              force_format;  
    static int              frame_count = 4;  
     
    static void errno_exit(const char *s)  
    {  
            fprintf(stderr, "%s error %d, %s
    ", s, errno, strerror(errno));  
            exit(EXIT_FAILURE);  
    }  
      
    static int xioctl(int fh, int request, void *arg)  
    {  
            int r;  
      
            do {  
                    r = ioctl(fh, request, arg);  
            } while (-1 == r && EINTR == errno);  
      
            return r;  
    }  
      
    static void process_image(const void *p, int size)  
    {
            if (out_buf)  
                    fwrite(p, size, 1, stdout);  
      
            fflush(stderr);  
            fprintf(stderr, ".");  
            fflush(stdout);  
    }  
    
    static void store_image(const char *buf_start, int size, int index)
    {
        char path[20];
        
        snprintf(path, sizeof(path), "./yuyv%d.yuv", index); 
        int fd = open(path, O_WRONLY|O_CREAT, 00700);
            if (-1 == fd) {  
                    fprintf(stderr, "Cannot open '%s': %d, %s
    ",  
                             path, errno, strerror(errno));  
                    exit(EXIT_FAILURE);  
            }  
    
        write(fd, buf_start, size);  
        close(fd);  
    }
    
    static int read_frame(void)  
    {  
            struct v4l2_buffer buf;  
            unsigned int i;  
      
            switch (io) {  
            case IO_METHOD_READ:  
                    if (-1 == read(fd, buffers[0].start, buffers[0].length)) {  
                            switch (errno) {  
                            case EAGAIN:  
                                    return 0;  
      
                            case EIO:  
                                    /* Could ignore EIO, see spec. */  
      
                                    /* fall through */  
      
                            default:  
                                    errno_exit("read");  
                            }  
                    }  
      
                    process_image(buffers[0].start, buffers[0].length);  
                    break;  
      
            case IO_METHOD_MMAP:  
                    CLEAR(buf);  
      
                    buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    buf.memory = V4L2_MEMORY_MMAP;  
                    if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {  
                            switch (errno) {  
                            case EAGAIN:  
                                    return 0;  
      
                            case EIO:  
                                    /* Could ignore EIO, see spec. */  
      
                                    /* fall through */  
      
                            default:  
                                    errno_exit("VIDIOC_DQBUF");  
                            }  
                    }  
                    assert(buf.index < n_buffers);  
    
              //printf("buf.bytesused = %d
    ", buf.bytesused);
                    process_image(buffers[buf.index].start, buf.bytesused);  
            store_image(buffers[buf.index].start, buf.bytesused, buf.index);
      
                    if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))  
                            errno_exit("VIDIOC_QBUF");  
                    break;  
      
            case IO_METHOD_USERPTR:  
                    CLEAR(buf);  
      
                    buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    buf.memory = V4L2_MEMORY_USERPTR;  
      
                    if (-1 == xioctl(fd, VIDIOC_DQBUF, &buf)) {  
                            switch (errno) {  
                            case EAGAIN:  
                                    return 0;  
      
                            case EIO:  
                                    /* Could ignore EIO, see spec. */  
      
                                    /* fall through */  
      
                            default:  
                                    errno_exit("VIDIOC_DQBUF");  
                            }  
                    }  
      
                    for (i = 0; i < n_buffers; ++i)  
                            if (buf.m.userptr == (unsigned long)buffers[i].start  
                                && buf.length == buffers[i].length)  
                                    break;  
      
                    assert(i < n_buffers);  
      
                    process_image((void *)buf.m.userptr, buf.bytesused);  
      
                    if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))  
                            errno_exit("VIDIOC_QBUF");  
                    break;  
            }  
      
            return 1;  
    }  
      
    /* two operations 
     * step1 : delay 
     * step2 : read frame 
     */  
    static void mainloop(void)  
    {  
            unsigned int count;  
      
            count = frame_count;  
      
            while (count-- > 0) {  
                    for (;;) {  
                            fd_set fds;  
                            struct timeval tv;  
                            int r;  
      
                            FD_ZERO(&fds);  
                            FD_SET(fd, &fds);  
      
                            /* Timeout. */  
                            tv.tv_sec = 2;  
                            tv.tv_usec = 0;  
      
                            r = select(fd + 1, &fds, NULL, NULL, &tv);  
      
                            if (-1 == r) {  
                                    if (EINTR == errno)  
                                            continue;  
                                    errno_exit("select");  
                            }  
      
                            if (0 == r) {  
                                    fprintf(stderr, "select timeout
    "); 
                                    exit(EXIT_FAILURE);  
                            }  
      
                            if (read_frame())  
                                    break;  
                            /* EAGAIN - continue select loop. */  
                    }  
            }  
    }  
    /* 
     * one operation 
     * step1 : VIDIOC_STREAMOFF 
     */  
    static void stop_capturing(void)  
    {  
            enum v4l2_buf_type type;  
            switch (io) {  
            case IO_METHOD_READ:  
                    /* Nothing to do. */  
                    break;  
      
            case IO_METHOD_MMAP:  
            case IO_METHOD_USERPTR:  
                    type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    if (-1 == xioctl(fd, VIDIOC_STREAMOFF, &type))  
                            errno_exit("VIDIOC_STREAMOFF");  
                    break;  
            }  
    }  
      
    /* tow operations 
     * step1 : VIDIOC_QBUF(insert buffer to queue) 
     * step2 : VIDIOC_STREAMOFF 
     */  
    static void start_capturing(void)  
    {  
            unsigned int i;  
            enum v4l2_buf_type type;  
      
            switch (io) {  
            case IO_METHOD_READ:  
                    /* Nothing to do. */  
                    break;  
      
            case IO_METHOD_MMAP:  
                    for (i = 0; i < n_buffers; ++i) {  
                            struct v4l2_buffer buf;  
      
                            CLEAR(buf);  
                            buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                            buf.memory = V4L2_MEMORY_MMAP;  
                            buf.index = i;  
      
                            if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))  
                                    errno_exit("VIDIOC_QBUF");  
                    } 
                    type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))  
                            errno_exit("VIDIOC_STREAMON");  
            break;  
      
            case IO_METHOD_USERPTR:  
                    for (i = 0; i < n_buffers; ++i) {  
                            struct v4l2_buffer buf;  
      
                            CLEAR(buf);  
                            buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                            buf.memory = V4L2_MEMORY_USERPTR;  
                            buf.index = i;  
                            buf.m.userptr = (unsigned long)buffers[i].start;  
                            buf.length = buffers[i].length;  
      
                            if (-1 == xioctl(fd, VIDIOC_QBUF, &buf))  
                                    errno_exit("VIDIOC_QBUF");  
                    }  
                    type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    if (-1 == xioctl(fd, VIDIOC_STREAMON, &type))  
                            errno_exit("VIDIOC_STREAMON");  
                    break;  
            }  
    }  
      
    /* two operations 
     * step1 : munmap buffers 
     * steo2 : free buffers 
     */  
    static void uninit_device(void)  
    {  
            unsigned int i;  
      
            switch (io) {  
            case IO_METHOD_READ:  
                    free(buffers[0].start);  
                    break;  
      
            case IO_METHOD_MMAP:  
                    for (i = 0; i < n_buffers; ++i)  
                            if (-1 == munmap(buffers[i].start, buffers[i].length))  
                                    errno_exit("munmap");  
                    break;  
      
            case IO_METHOD_USERPTR:  
                    for (i = 0; i < n_buffers; ++i)  
                            free(buffers[i].start);  
                    break;  
            }  
      
            free(buffers);  
    }  
      
    static void init_read(unsigned int buffer_size)  
    {  
            buffers = calloc(1, sizeof(*buffers));  
      
            if (!buffers) {  
                    fprintf(stderr, "Out of memory
    ");  
                    exit(EXIT_FAILURE);  
            }  
      
            buffers[0].length = buffer_size;  
            buffers[0].start = malloc(buffer_size);  
      
            if (!buffers[0].start) {  
                    fprintf(stderr, "Out of memory
    ");  
                    exit(EXIT_FAILURE);  
            }  
    }  
      
    static void init_mmap(void)  
    {  
            struct v4l2_requestbuffers req;  
      
            CLEAR(req);  
      
            req.count = 4;  
            req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
            req.memory = V4L2_MEMORY_MMAP;  
    
            if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {  
                    if (EINVAL == errno) {  
                            fprintf(stderr, "%s does not support "  
                                     "memory mapping
    ", dev_name);  
                            exit(EXIT_FAILURE);  
                    } else {  
                            errno_exit("VIDIOC_REQBUFS");  
                    }  
            }  
      
            if (req.count < 2) {  
                    fprintf(stderr, "Insufficient buffer memory on %s
    ",  
                             dev_name);  
                    exit(EXIT_FAILURE);  
            }  
            buffers = calloc(req.count, sizeof(*buffers));  
      
            if (!buffers) {  
                    fprintf(stderr, "Out of memory
    ");  
                    exit(EXIT_FAILURE);  
            }  
      
            for (n_buffers = 0; n_buffers < req.count; ++n_buffers) {  
                    struct v4l2_buffer buf;  
      
                    CLEAR(buf);  
      
                    buf.type        = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    buf.memory      = V4L2_MEMORY_MMAP;  
                    buf.index       = n_buffers;  
      
                    if (-1 == xioctl(fd, VIDIOC_QUERYBUF, &buf))  
                            errno_exit("VIDIOC_QUERYBUF");  
      
                    buffers[n_buffers].length = buf.length;
            printf("buffers[%d].length=%d
    ", n_buffers, buffers[n_buffers].length);
                    buffers[n_buffers].start =  
                            mmap(NULL /* start anywhere */,  
                                  buf.length,  
                                  PROT_READ | PROT_WRITE /* required */,  
                                  MAP_SHARED /* recommended */,  
                                  fd, buf.m.offset);  
      
                    if (MAP_FAILED == buffers[n_buffers].start)  
                            errno_exit("mmap");  
            }  
    }  
      
    static void init_userp(unsigned int buffer_size)  
    {  
            struct v4l2_requestbuffers req;  
      
            CLEAR(req);  
      
            req.count  = 4;  
            req.type   = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
            req.memory = V4L2_MEMORY_USERPTR;  
      
            if (-1 == xioctl(fd, VIDIOC_REQBUFS, &req)) {  
                    if (EINVAL == errno) {  
                            fprintf(stderr, "%s does not support "  
                                     "user pointer i/o
    ", dev_name);  
                            exit(EXIT_FAILURE);  
                    } else {  
                            errno_exit("VIDIOC_REQBUFS");  
                    }  
            }  
      
            buffers = calloc(4, sizeof(*buffers));  
      
            if (!buffers) {  
                    fprintf(stderr, "Out of memory
    ");  
                    exit(EXIT_FAILURE);  
            }  
      
            for (n_buffers = 0; n_buffers < 4; ++n_buffers) {  
                    buffers[n_buffers].length = buffer_size;  
                    buffers[n_buffers].start = malloc(buffer_size);  
      
                    if (!buffers[n_buffers].start) {  
                            fprintf(stderr, "Out of memory
    ");  
                            exit(EXIT_FAILURE);  
                    }  
            }  
    }  
      
    /* five operations 
     * step1 : cap :query camera's capability and check it(is a video device? is it support read? is it support streaming?) 
     * step2 : cropcap:set cropcap's type and get cropcap by VIDIOC_CROPCAP 
     * step3 : set crop parameter by VIDIOC_S_CROP (such as frame type and angle) 
     * step4 : set fmt 
     * step5 : mmap 
     */  
    static void init_device(void)  
    {  
            struct v4l2_capability cap;  
            struct v4l2_cropcap cropcap;  
            struct v4l2_crop crop;  
            struct v4l2_format fmt;  
            unsigned int min; 
    
        
            if (-1 == xioctl(fd, VIDIOC_QUERYCAP, &cap)) {  
                    if (EINVAL == errno) {  
                            fprintf(stderr, "%s is no V4L2 device
    ",  
                                     dev_name);  
                            exit(EXIT_FAILURE);  
                    } else {  
                            errno_exit("VIDIOC_QUERYCAP");  
                    }  
            }  
            if (!(cap.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {  
                    fprintf(stderr, "%s is no video capture device
    ",  
                             dev_name);  
                    exit(EXIT_FAILURE);  
            }  
    
            switch (io) {  
            case IO_METHOD_READ:  
                    if (!(cap.capabilities & V4L2_CAP_READWRITE)) {  
                            fprintf(stderr, "%s does not support read i/o
    ",  
                                     dev_name);  
                            exit(EXIT_FAILURE);  
                    }  
                    break;  
      
            case IO_METHOD_MMAP:  
            case IO_METHOD_USERPTR:  
                    if (!(cap.capabilities & V4L2_CAP_STREAMING)) {  
                            fprintf(stderr, "%s does not support streaming i/o
    ",  
                                     dev_name);  
                            exit(EXIT_FAILURE);  
                    }  
                    break;  
            }  
      
      
            /* Select video input, video standard and tune here. */  
            CLEAR(cropcap);  
      
            cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
            /* if device support cropcap's type then set crop */  
            if (0 == xioctl(fd, VIDIOC_CROPCAP, &cropcap)) {  
                    crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
                    crop.c = cropcap.defrect; /* reset to default */  
      
                    if (-1 == xioctl(fd, VIDIOC_S_CROP, &crop)) {  
                            switch (errno) {  
                            case EINVAL:  
                                    /* Cropping not supported. */  
                                    break;  
                            default:  
                                    /* Errors ignored. */  
                                    break;  
                            }  
                    }  
            } else {  
                    /* Errors ignored. */  
            }  
      
      
            CLEAR(fmt);  
      
            fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;  
            if (force_format) {  
                    fmt.fmt.pix.width       = 640;  
                    fmt.fmt.pix.height      = 480;  
                    fmt.fmt.pix.pixelformat = V4L2_PIX_FMT_YUYV;  
                    fmt.fmt.pix.field       = V4L2_FIELD_INTERLACED; 
      
              printf("set %d*%d YUYV format
    ", fmt.fmt.pix.width, fmt.fmt.pix.height);
                    if (-1 == xioctl(fd, VIDIOC_S_FMT, &fmt))  
                            errno_exit("VIDIOC_S_FMT");  
      
                    /* Note VIDIOC_S_FMT may change width and height. */  
            } else {  
                    /* Preserve original settings as set by v4l2-ctl for example */  
                    if (-1 == xioctl(fd, VIDIOC_G_FMT, &fmt))  
                            errno_exit("VIDIOC_G_FMT");  
            }  
      
            /* Buggy driver paranoia. */  
            min = fmt.fmt.pix.width * 2;  
            if (fmt.fmt.pix.bytesperline < min)  
                    fmt.fmt.pix.bytesperline = min;  
            min = fmt.fmt.pix.bytesperline * fmt.fmt.pix.height;  
            if (fmt.fmt.pix.sizeimage < min)  
                    fmt.fmt.pix.sizeimage = min;  
      
            switch (io) {  
            case IO_METHOD_READ:  
                    init_read(fmt.fmt.pix.sizeimage);  
                    break;  
      
            case IO_METHOD_MMAP:  
                    init_mmap();  
                    break;  
      
            case IO_METHOD_USERPTR:  
                    init_userp(fmt.fmt.pix.sizeimage);  
                    break;  
            }  
    }  
      
    /* 
     * close (fd) 
     */  
    static void close_device(void)  
    {  
            if (-1 == close(fd))  
                    errno_exit("close");  
      
            fd = -1;  
    }  
      
    /* three operations 
     * step 1 : check dev_name and st_mode 
     * step 2 : open(device) 
     */  
    static void open_device(void)  
    {  
            struct stat st;  
      
            if (-1 == stat(dev_name, &st)) {  
                    fprintf(stderr, "Cannot identify '%s': %d, %s
    ",  
                             dev_name, errno, strerror(errno));  
                    exit(EXIT_FAILURE);  
            }  
      
            if (!S_ISCHR(st.st_mode)) {  
                    fprintf(stderr, "%s is no device
    ", dev_name);  
                    exit(EXIT_FAILURE);  
            }  
      
            fd = open(dev_name, O_RDWR /* required */ | O_NONBLOCK, 0);  
      
            if (-1 == fd) {  
                    fprintf(stderr, "Cannot open '%s': %d, %s
    ",  
                             dev_name, errno, strerror(errno));  
                    exit(EXIT_FAILURE);  
            }  
    }  
      
    static void usage(FILE *fp, int argc, char **argv)  
    {  
            fprintf(fp,  
                     "Usage: %s [options]
    
    "  
                     "Version 1.3
    "  
                     "Options:
    "  
                     "-d | --device name   Video device name [%s]
    "  
                     "-h | --help          Print this message
    "  
                     "-m | --mmap          Use memory mapped buffers [default]
    "  
                     "-r | --read          Use read() calls
    "  
                     "-u | --userp         Use application allocated buffers
    "  
                     "-o | --output        Outputs stream to stdout
    "  
                     "-f | --format        Force format to 640x480 YUYV
    "  
                     "-c | --count         Number of frames to grab [%i]
    "  
                     "",  
                     argv[0], dev_name, frame_count);  
    }  
      
    static const char short_options[] = "d:hmruofc:";  
      
    static const struct option  
    long_options[] = {  
            { "device", required_argument, NULL, 'd' },  
            { "help",   no_argument,       NULL, 'h' },  
            { "mmap",   no_argument,       NULL, 'm' },  
            { "read",   no_argument,       NULL, 'r' },  
            { "userp",  no_argument,       NULL, 'u' },  
            { "output", no_argument,       NULL, 'o' },  
            { "format", no_argument,       NULL, 'f' },  
            { "count",  required_argument, NULL, 'c' },  
            { 0, 0, 0, 0 }  
    };  
      
    int main(int argc, char **argv)  
    {  
            dev_name = "/dev/video0";  
      
            for (;;) {  
                    int idx;  
                    int c;  
      
                    c = getopt_long(argc, argv,  
                                    short_options, long_options, &idx);  
      
                    if (-1 == c)  
                            break;  
      
                    switch (c) {  
                    case 0: /* getopt_long() flag */  
                            break;  
      
                    case 'd':  
                            dev_name = optarg;  
                            break;  
      
                    case 'h':  
                            usage(stdout, argc, argv);  
                            exit(EXIT_SUCCESS);  
      
                    case 'm':  
                            io = IO_METHOD_MMAP;  
                            break;  
      
                    case 'r':  
                            io = IO_METHOD_READ;  
                            break;  
      
                    case 'u':  
                            io = IO_METHOD_USERPTR;  
                            break;  
      
                    case 'o':  
                            out_buf++;  
                            break;  
      
                    case 'f':  
                            force_format++;  
                            break;  
      
                    case 'c':  
                            errno = 0;  
                            frame_count = strtol(optarg, NULL, 0);  
                            if (errno)  
                                    errno_exit(optarg);  
                            break;  
      
                    default:  
                            usage(stderr, argc, argv);  
                            exit(EXIT_FAILURE);  
                    }  
            }  
      
            open_device();  
        init_device(); 
    
            start_capturing();  
            mainloop();  
            stop_capturing();  
            uninit_device(); 
            close_device();  
            fprintf(stderr, "
    ");  
            return 0;  
    } 

      

    / # ./a.out -f
    set 640*480 YUYV format
    buffers[0].length=614400
    buffers[1].length=614400
    buffers[2].length=614400
    buffers[3].length=614400
    ....
    / # sz yuyv2.yuv

    用图片查看器“RawImageViewer.exe” :(由于我的摄像头配置成扫码模式 所以是黑白图)

  • 相关阅读:
    2019春第一次实验报告
    2019春第二次实验报告
    第十二周编程总结
    第十一周编程总结
    第十周作业
    C语言II博客作业04
    C语言II博客作业03
    C语言II博客作业02
    C语言II博客作业01
    学期总结
  • 原文地址:https://www.cnblogs.com/vedic/p/10763838.html
Copyright © 2020-2023  润新知