大意: $n$个题, 按照第$i$题随机$t_i$或$t_i+1$秒钟完成, 最多做$T$秒, 求做题数期望.
期望转为做题数$ge x$的方案数之和最后再除以总方案数
这是因为$sumlimits_{x}x{cnt}_x=sumlimits_{x}sumlimits_{yge x}{cnt}_y$
然后得到对于$x$的贡献为$2^{n-x}sumlimits_{k=0}^{min(x,T-s[x])}inom{x}{k}$
上面的和式中$k$最大值关于$x$是递减的, 可以逆序枚举$x$, $O(1)$将$suminom{x+1}{k}$转移到$suminom{x}{k}$.
复杂度就为$O(n)$.
#include <iostream> #include <cstdio> #define REP(i,a,n) for(int i=a;i<=n;++i) #define PER(i,a,n) for(int i=n;i>=a;--i) using namespace std; typedef long long ll; const int P = 1e9+7, inv2 = (P+1)/2; ll inv(ll x){return x<=1?1:inv(P%x)*(P-P/x)%P;} const int N = 1e6+10; int n,a[N],fac[N],ifac[N],po[N]; ll T,s[N]; int C(ll n, ll m) { if (n<m) return 0; return (ll)fac[n]*ifac[m]%P*ifac[n-m]%P; } int main() { fac[0]=ifac[0]=po[0]=1; REP(i,1,N-1) po[i]=po[i-1]*2ll%P; REP(i,1,N-1) fac[i]=(ll)fac[i-1]*i%P; ifac[N-1]=inv(fac[N-1]); PER(i,1,N-2) ifac[i]=(ll)ifac[i+1]*(i+1)%P; scanf("%d%lld", &n, &T); REP(i,1,n) scanf("%d",a+i),s[i]=s[i-1]+a[i]; int ans = 0, ret = 0, pre = -1; PER(i,1,n) if (s[i]<=T) { int mx = i; if (T-s[i]<mx) mx = T-s[i]; if (!mx) ret = 1; else if (pre>mx) ret = po[i]; else { REP(j,pre+1,mx) ret = (ret+C(i+1,j))%P; ret = (ret+C(i,mx))*(ll)inv2%P; } ans = (ans+(ll)ret*po[n-i])%P; pre = mx; } ans = (ll)ans*inv(po[n])%P; if (ans<0) ans += P; printf("%d ", ans); }