---恢复内容开始---
今天无事水一水,结果就看到这个水题了!
题意思是 有俩个区域如图
求在俩个圆之间的运动时间 给出 初始的开始点和速度的矢量式;而且这个点 不再俩个圆之间的区域,且碰到内测园会反弹:
在大大物实验的时候记得学过为了减少误差 和简易计算可以:把这个小圆看成质点,并把固定园的半径加上小圆的半径。
其实就是求 与俩个圆与射线的交点! 代码如下:()
#include <cstring> #include <cmath> #include <algorithm> #include <cstdlib> #include <cstdio> using namespace std; struct point { double x,y; point (double x=0,double y=0):x(x),y(y){} }; typedef point Vector; const double eps=1e-8; int dcmp(double x) { if(fabs(x)<eps) return 0; return x<0?-1:1; } Vector operator + (Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);} Vector operator - (Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);} Vector operator * (Vector a,double b){return Vector(a.x*b,a.y*b);} double det(Vector a,Vector b){return a.x*b.y-a.y*b.x;} double dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;} double lenth(Vector a){return sqrt(dot(a,a));} struct line { point p; Vector v; double angle; line(){} line(point p,Vector v):p(p),v(v){} bool operator <(const line &rht)const { return angle<rht.angle; } }; struct circle { point c; double r; circle(){c=point(0.0,0.0);} circle(point c,double r):c(c),r(r){} point Point(double rad) { return point(c.x+cos(rad)*r,c.y+sin(rad)*r); } }; int get_circle_intersection(line L,circle C,double &t1,double &t2) { t1=t2=0; double a=L.v.x, b=L.p.x-C.c.x,c=L.v.y,d=L.p.y-C.c.y; double e=a*a+c*c,f=2*(a*b+c*d),g=b*b+d*d-C.r*C.r; double detle = f*f-4*e*g; if(dcmp(detle)<0) return 0; if(dcmp(detle)==0) {t1=t2=-f/(2*e);return 1;} t1=(-f-sqrt(detle)) /(2*e); t2=(-f+sqrt(detle)) /(2*e); if(dcmp(t1)<0 || dcmp(t2)<0) return 0;//按照速度的反方向才可以和圆相交 return 2; } int main() { double t1,t2; double x1,x2; line tmp; circle tmp1; circle tmp2; double Rm, R, r; while(~scanf("%lf %lf %lf %lf %lf %lf %lf",&Rm,&R,&r,&tmp.p.x,&tmp.p.y,&tmp.v.x,&tmp.v.y)) { Rm+=r;R+=r; tmp1.r=Rm; tmp2.r=R; int count1=get_circle_intersection(tmp,tmp1,t1,t2); int count2=get_circle_intersection(tmp,tmp2,x1,x2); if(count2==0)printf("0.00 "); else printf("%.3lf ",fabs(x2-x1)-fabs(t1-t2));// 因为直线式点+向量(和速度一样)所以减法就可以了 } return 0; }