• hdu 三部曲 A Knight's Journey 简单dfs(),顺序很重要(字典序),搜索顺序的先后体现


    Problem Description
    Background 
    The knight is getting bored of seeing the same black and white squares again and again and has decided to make a journey 
    around the world. Whenever a knight moves, it is two squares in one direction and one square perpendicular to this. The world of a knight is the chessboard he is living on. Our knight lives on a chessboard that has a smaller area than a regular 8 * 8 board, but it is still rectangular. Can you help this adventurous knight to make travel plans? 

    Problem 
    Find a path such that the knight visits every square once. The knight can start and end on any square of the board.
     
    Input
    The input begins with a positive integer n in the first line. The following lines contain n test cases. Each test case consists of a single line with two positive integers p and q, such that 1 <= p * q <= 26. This represents a p * q chessboard, where p describes how many different square numbers 1, . . . , p exist, q describes how many different square letters exist. These are the first q letters of the Latin alphabet: A, . . .
     
    Output
    The output for every scenario begins with a line containing "Scenario #i:", where i is the number of the scenario starting at 1. Then print a single line containing the lexicographically first path that visits all squares of the chessboard with knight moves followed by an empty line. The path should be given on a single line by concatenating the names of the visited squares. Each square name consists of a capital letter followed by a number. 
    If no such path exist, you should output impossible on a single line.
     
    Sample Input
    3 1 1 2 3 4 3
     
    Sample Output
    Scenario #1: A1 Scenario #2: impossible Scenario #3: A1B3C1A2B4C2A3B1C3A4B2C4
     **************************************************************************************************************************
    深搜dfs(),经典体现,
    ***************************************************************************************************************************
     1 #include<iostream>
     2 #include<string>
     3 #include<cstring>
     4 #include<cstdio>
     5 #include<algorithm>
     6 #include<cmath>
     7 using namespace std;
     8 int d[8][2]={-2, -1, -2, 1, -1, -2, -1, 2, 1, -2, 1, 2, 2, -1, 2, 1};
     9 int s[29][29];
    10 char  p[100];
    11 int m,n,cas;
    12 int dfs(int x,int y,int mark)
    13 {
    14      if(mark==n*m) return 1;
    15      for(int i=0;i<8;i++)
    16      {
    17          int dx=x+d[i][0];
    18          int dy=y+d[i][1];
    19          if(dx<m&&dx>=0&&dy<n&&dy>=0&&s[dy][dx]==0)
    20            {
    21                s[dy][dx]=1;
    22                p[(mark<<1)]='A'+dx;
    23                p[(mark<<1)+1]='1'+dy;
    24                if(dfs(dx,dy,mark+1))//dfs精华
    25                  return 1;
    26                s[dy][dx]=0;
    27            }
    28      }
    29      return 0;
    30 }
    31 int main()
    32 {
    33     scanf("%d",&cas);
    34     int k;
    35     for(k=1;k<=cas;k++)
    36     {
    37         scanf("%d%d",&n,&m);
    38         memset(s,0,sizeof(s));
    39         memset(p,0,sizeof(p));
    40         s[0][0]=1;
    41         p[0]='A';
    42         p[1]='1';
    43         if(dfs(0,0,1))
    44         {
    45             printf("Scenario #%d:
    ",k);
    46             for(int it=0;it<strlen(p);it++)
    47              printf("%c",p[it]);
    48             printf("
    
    ");
    49 
    50         }
    51         else
    52         {
    53             printf("Scenario #%d:
    impossible
    
    ",k);
    54         }
    55 
    56    }
    57 }
    View Code
  • 相关阅读:
    洛谷P2569 (BZOJ1855)[SCOI2010]股票交易 【单调队列优化DP】
    洛谷 P2254 [NOI2005]瑰丽华尔兹(单调栈优化DP)
    CF372C Watching Fireworks is Fun(单调队列优化DP)
    2019牛客全国多校第八场A题 All-one Matrices(单调栈)
    HDU3896 Greatest TC(双联通分量+倍增)
    2019牛客多校第7场
    ZOJ 2112 Dynamic Rankings(树状数组+主席树)
    2019 杭电多校第六场 题解
    HDU2242 考研路茫茫——空调教室 (双联通分+树形DP)
    HDU5536 Chip Factory
  • 原文地址:https://www.cnblogs.com/sdau--codeants/p/3362142.html
Copyright © 2020-2023  润新知