from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import numpy as np from sklearn.cluster import KMeans from sklearn import metrics from sklearn import datasets blobs, ground_truth = datasets.make_blobs(1000, centers=3,cluster_std=1.75) #先看看数据长什么样子 f, ax = plt.subplots(figsize=(7, 5)) colors = ['r', 'g', 'b'] for i in range(3): p = blobs[ground_truth == i] ax.scatter(p[:,0], p[:,1], c=colors[i],label="Cluster {}".format(i)) ax.set_title("Cluster With Ground Truth") ax.legend() f.show() f.savefig("9485OS_03-16") #绘制聚簇中心 kmeans = KMeans(n_clusters=3) kmeans.fit(blobs) print(kmeans.cluster_centers_) f, ax = plt.subplots(figsize=(7, 5)) colors = ['r', 'g', 'b'] for i in range(3): p = blobs[ground_truth == i] ax.scatter(p[:,0], p[:,1], c=colors[i],label="Cluster {}".format(i)) ax.scatter(kmeans.cluster_centers_[:, 0],kmeans.cluster_centers_[:, 1], s=100, color='black',label='Centers') ax.set_title("Cluster With Ground Truth") ax.legend() f.savefig("9485OS_03-17") f.show()