• Poj Optimal Milking 2112 floyd+dinic+二分


    Poj Optimal Milking 2112 floyd+dinic+二分

    ​ FJ has moved his K (1 <= K <= 30) milking machines out into the cow pastures among the C (1 <= C <= 200) cows. A set of paths of various lengths runs among the cows and the milking machines. The milking machine locations are named by ID numbers 1..K; the cow locations are named by ID numbers K+1..K+C. Each milking point can "process" at most M (1 <= M <= 15) cows each day.
    ​ Write a program to find an assignment for each cow to some milking machine so that the distance the furthest-walking cow travels is minimized (and, of course, the milking machines are not overutilized). At least one legal assignment is possible for all input data sets. Cows can traverse several paths on the way to their milking machine.

    Input

    Line 1: A single line with three space-separated integers: K, C, and M.

    Lines 2.. ...: Each of these K+C lines of K+C space-separated integers describes the distances between pairs of various entities. The input forms a symmetric matrix. Line 2 tells the distances from milking machine 1 to each of the other entities; line 3 tells the distances from machine 2 to each of the other entities, and so on. Distances of entities directly connected by a path are positive integers no larger than 200. Entities not directly connected by a path have a distance of 0. The distance from an entity to itself (i.e., all numbers on the diagonal) is also given as 0. To keep the input lines of reasonable length, when K+C > 15, a row is broken into successive lines of 15 numbers and a potentially shorter line to finish up a row. Each new row begins on its own line.

    Output

    ​ A single line with a single integer that is the minimum possible total distance for the furthest walking cow.

    Sample Input

    2 3 2

    0 3 2 1 1

    3 0 3 2 0

    2 3 0 1 0

    1 2 1 0 2

    1 0 0 2 0

    Sample Output

    2

    分析:

    ​ 本题要安排C头奶牛到某个挤奶器,使得每头奶牛需要走的路程中最大路程的距离最小。

    ​ 本题的求解方法:先用floyd算法求出能达到的任意两点之间的最短路径,然后用dinic算法求最大流;搜索最大距离的最小值采用二分法进行。

    代码如下:

    #include<cstdio>
    #include<cstring>
    #include<cmath>
    #include<algorithm>
    #include<queue>
    using namespace std;
    const int INF = 0x3f3f3f3f;
    const int MAX = 300;
    int dis[MAX][MAX];
    int map[MAX][MAX];
    bool sign[MAX][MAX];
    bool used[MAX];
    int K,C,n,M;
    queue<int > q;
    void floyd() {
        for(int k = 1;k <= n;k++) {
            for(int i = 1;i <= n;i++) {
                if(dis[i][k] == INF) continue;
                for(int j = 1;j <= n;j++) {
                    if(dis[k][j] == INF) continue;
                    dis[i][j] = min(dis[i][j],dis[i][k]+dis[k][j]);
                }
            }
        }
    }
    void Build_Graph(int min_max) {
        memset(map,0,sizeof(map));
        for(int i = 1;i <= n;i++) {
            if(i<=K) map[i][n+1] = M;
            else map[0][i] = 1;
        }
        for(int i = K+1;i<=n;i++) {
            for(int j = 1;j <=K;j++) {
                if(dis[i][j] <= min_max) map[i][j] = 1;
            }
        }
    }
    bool bfs() {
        memset(used,0,sizeof(used));
        memset(sign,0,sizeof(sign));
        while(!q.empty()) q.pop();
        used[0] = 1;
        q.push(0);
        while(!q.empty()) {
            for(int i = 0;i <= n+1;i++) {
                if(!used[i] && map[q.front()][i]) {
                    q.push(i);
                    used[i] = 1;
                    sign[q.front()][i] = 1;
                }
            }
            q.pop();
        }
        if(used[n+1]) return true;
        else return false;
    }
    int dfs(int v,int sum) {
        int s,t;
        if(v == n+1) return sum;
        s = sum;
        for(int i = 0;i <= n+1;i++) {
            if(sign[v][i]) {
                t = dfs(i,min(map[v][i],sum));
                map[v][i] -= t;
                map[i][v] += t;
                sum -= t;
            }
        }
        return s - sum;
    }
    int dinic() {
        int sum = 0;
        while(bfs()) sum+=dfs(0,INF);
        return sum;
    }
    int main() {
        int l,r,mid,ans;
        scanf("%d%d%d",&K,&C,&M);
        n = K+C;
        memset(dis,0x3f,sizeof(dis));
        for(int i = 1;i <= n;i++) {
            for(int j = 1;j <= n;j++) {
                scanf("%d",&dis[i][j]);
                if(i !=j && dis[i][j] == 0) dis[i][j] = INF;
            }
        }
        floyd();
        l = 0,r = 10000;
        while(l<r) {
            mid = (l+r)/2;
            Build_Graph(mid);
            ans = dinic();
            if(ans>=C) r = mid;
            else l = mid+1;
        }
        printf("%d
    ",r);
        return 0;
    }
    
    我现在最大的问题就是人蠢而且还懒的一批。
  • 相关阅读:
    2级联动下拉列表写法
    select选中获取索引三种写法
    判断设备-安卓|苹果|微信
    限制输入字符个数的jq插件
    面试题:1.清空字符串前后的空格;2.找出出现最多的字符
    css3玩转各种效果【资源】
    利用jquery.touchSwipe.js实现的移动滑屏效果。
    【leetcode刷题笔记】Letter Combinations of a Phone Number
    【leetcode刷题笔记】Linked List Cycle
    【leetcode刷题笔记】Length of Last Word
  • 原文地址:https://www.cnblogs.com/pot-a-to/p/10957291.html
Copyright © 2020-2023  润新知