• Convergence theorems for measurable functions


    The swapping of integration and taking limit of the integrand, like (int lim_{n ightarrow infty} f_n = lim_{n ightarrow infty} int f_n ), is usually taken for granted as a valid operation in engineering courses. However, if we require mathematical rigorousness, such manipulation relies on additional constraints in order to be feasible. This is governed by a set of convergence theorems about measurable functions. By referring to Halsey Royden's "Real Analysis (3th ed., 2004)", this article compiles these theorems to present an overview of their similarities and differences.

    Let ({f_n}_{n geq 1}) be a sequence of measurable functions defined on a measurable set (E). The measure of (E) is ({ m m}(E)). Let (g) be integrable on (E) and ({g_n}_{n geq 1}) be a sequence of integrable functions which converges a.e. to (g). The integrals in the following are in the sense of Lebesgue integral.

    Theorem

    Requirements on

    $${f_n}_{n geq 1}$$

    $${ m m}(E)$$

    Convergence of
    $${f_n}_{n geq 1}$$

    Boundedness of
    $${f_n}_{n geq 1}$$

    Swapping of integration
    and taking limit
    Bounded
    convergence
    theorem
    Measurable $${ m m}(E)in [0, infty)$$ $f_n ightarrow f$ on $E$ $$abs{f_n(x)} leq M$$ [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Fatou's
    Lemma
    1. Measurable
    2. Nonnegative
    $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ None [displaystyle{int_E f leq underline limint_E f_n}]
    Monotone
    convergence
    theorem
    1. Measurable
    2. Nonnegative
    3. Increasing
    $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ None [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Lebesgue
    convergence
    theorem
    Measurable $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ 1. $abs{f_n} leq g$
    2. $int_E g < infty$
    [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
    Extended
    Lebesgue
    convergence
    theorem
    Measurable $${ m m}(E) in [0,infty]$$ $f_n ightarrow f$ a.e. on $E$ 1. $abs{f_n} leq g_n$
    2. $int_E g_n < infty$
    3. $g_n ightarrow g$ a.e. on $E$
    4. $int_E g < infty$
    5. $int_E g = lim_{n ightarrow infty} int_E g_n$
    [displaystyle{int_E f = lim_{n ightarrow infty} int_E f_n}]
  • 相关阅读:
    【BZOJ 1579】 1579: [Usaco2009 Feb]Revamping Trails 道路升级 (最短路)
    有限广播地址与直接广播地址
    人生苦短之我用Python篇(线程/进程、threading模块:全局解释器锁gil/信号量/Event、)
    SQL基础二
    Ubuntu命令:sudo、shutdown、apt-get、vim
    SQL基础一
    MPLS基础一
    第一章 Linux系统入门
    P4简介:数据平面的编程语言
    人生苦短之我用Python篇(安装第三方库、正则表达式)
  • 原文地址:https://www.cnblogs.com/peabody/p/20200719-Convergence-theorems-for-measurable-funct.html
Copyright © 2020-2023  润新知