NumPy - 高级索引
如果一个ndarray
是非元组序列,数据类型为整数或布尔值的ndarray
,或者至少一个元素为序列对象的元组,我们就能够用它来索引ndarray
。高级索引始终返回数据的副本。 与此相反,切片只提供了一个视图。
有两种类型的高级索引:整数和布尔值。
整数索引
这种机制有助于基于 N 维索引来获取数组中任意元素。 每个整数数组表示该维度的下标值。 当索引的元素个数就是目标ndarray
的维度时,会变得相当直接。
以下示例获取了ndarray
对象中每一行指定列的一个元素。 因此,行索引包含所有行号,列索引指定要选择的元素。
示例 1
import numpy as np
x = np.array([[1, 2], [3, 4], [5, 6]])
y = x[[0,1,2], [0,1,0]]
print y
输出如下:
[1 4 5]
该结果包括数组中(0,0)
,(1,1)
和(2,0)
位置处的元素。
下面的示例获取了 4X3 数组中的每个角处的元素。 行索引是[0,0]
和[3,3]
,而列索引是[0,2]
和[0,2]
。
示例 2
import numpy as np
x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print '我们的数组是:'
print x
print '
'
rows = np.array([[0,0],[3,3]])
cols = np.array([[0,2],[0,2]])
y = x[rows,cols]
print '这个数组的每个角处的元素是:'
print y
输出如下:
我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
这个数组的每个角处的元素是:
[[ 0 2]
[ 9 11]]
返回的结果是包含每个角元素的ndarray
对象。
高级和基本索引可以通过使用切片:
或省略号...
与索引数组组合。 以下示例使用slice
作为列索引和高级索引。 当切片用于两者时,结果是相同的。 但高级索引会导致复制,并且可能有不同的内存布局。
示例 3
import numpy as np
x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print '我们的数组是:'
print x
print '
'
# 切片
z = x[1:4,1:3]
print '切片之后,我们的数组变为:'
print z
print '
'
# 对列使用高级索引
y = x[1:4,[1,2]]
print '对列使用高级索引来切片:'
print y
输出如下:
我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
切片之后,我们的数组变为:
[[ 4 5]
[ 7 8]
[10 11]]
对列使用高级索引来切片:
[[ 4 5]
[ 7 8]
[10 11]]
布尔索引
当结果对象是布尔运算(例如比较运算符)的结果时,将使用此类型的高级索引。
示例 1
这个例子中,大于 5 的元素会作为布尔索引的结果返回。
import numpy as np
x = np.array([[ 0, 1, 2],[ 3, 4, 5],[ 6, 7, 8],[ 9, 10, 11]])
print '我们的数组是:'
print x
print '
'
# 现在我们会打印出大于 5 的元素
print '大于 5 的元素是:'
print x[x > 5]
输出如下:
我们的数组是:
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
大于 5 的元素是:
[ 6 7 8 9 10 11]
示例 2
这个例子使用了~
(取补运算符)来过滤NaN
。
import numpy as np
a = np.array([np.nan, 1,2,np.nan,3,4,5])
print a[~np.isnan(a)]
输出如下:
[ 1. 2. 3. 4. 5.]
示例 3
以下示例显示如何从数组中过滤掉非复数元素。
import numpy as np
a = np.array([1, 2+6j, 5, 3.5+5j])
print a[np.iscomplex(a)]
输出如下:
[2.0+6.j 3.5+5.j]