• neo4j 初探


    neo4j 初探

    参考 转载:http://shomy.top/2018/06/08/neo4j-start/

    近期需要处理图数据,考察后打算使用neo4j, 相比其他一些图数据库,neo4j开源,跨平台,接口友好,文档齐全,完整支持ACID。 首先放一张网上的图片,关系型数据库与图数据库存储网络数据的差异:
    这里写图片描述

    初次接触neo4j 踩了不少坑,这里记录一下。

    关于如何安装Neo4j和使用web ui进行查询操作就不再赘述。

    Cypher基本操作

    相比关系型数据库的SQL查询语言,Neo4j的查询语言为Cypher,语法更加友好,更适合图数据做查询操作。

    概念

    首先介绍在图数据里面几个概念:

    • 节点(Node): 使用小括号表示(n)表示n这个节点,同时一般都会赋予节点某个标签(Label), 等同于关系书库里面的表名。比如(n: Person)表示n是一个Person类的节点,当然一个节点可以同时有多个label.
    • 关系(Relation):关系使用中括号表示[r:Knows]表示rKnows这种关系。两个节点的关系用--表示,如果有方向的话,加个箭头即可。(a)-[r:Knowns]->(b)表示节点a和b之间有r关系,其中Knownsr的类型
    • 属性(Property): 节点和关系都可以附带属性,这个也是图数据库的优势,储存属性非常方便,直接用key-value表示即可。比如(n:Person{name:"John"})表示一个含有属性name值为John节点n。同样关系也可以有属性:**[r:Knows]{year: 2018}**表示为r赋予一个year属性。

    关键字

    几个常用的关键字介绍:

    • MATCH: 表示查询,是读数据库操作。比如查属于Person的节点:MATCH (n:Person),查找姓名为“John”的节点:MATCH (n:Person){name: "John"}或者使用where语句:MATCH (n:Person) WHERE n.name="John"。当然这里面很多语法可以使用,比如正则匹配等,这里就不再赘述了。当然在实际使用中,MATCH不能单独使用,需要结合RETURN

    • CREATE: 表示创建,可以新增节点,关系,索引,约束等等,是一种写操作。比如CREATE (n:Person{name:"Ana"})表示创建一个name为“Ana”的Person类的节点。在创建的同时可以设置属性:CREATE (n:Person{name:"Ana"}) set n.age=20同样在某个属性上创建索引:CREATE INDEX ON :Person(name),这里需要提一下,尽量所有的Label都设置索引或者UNIQUE约束,在后续的读操作比如MATCH会大大提高性能(创建索引可以在导入节点之前执行)。

    • DELETE: 表示删除节点,关系等,也是写操作。一般需要结合MATCH匹配查询要删除的节点。MATCH (n:Person) DELETE n。如果在删除有关系的节点,这样删除会报错,可以先删除边MATCH (n:Person)-[r:KNOWS]->() DELETE r再删除节点。不过更推荐使用DETACH DELETE来级联删除,MATCH (n:Person) DETACH DELETE n可以同时删除节点及节点的关系。

    • MERGE合并节点或者关系,属于先读后写操作,相当于MATCH + CREATE,先检查数据库中节点/关系是否存在,如果存在的话就不再创建,反之执行CREATE。如:

      MERGE(a:Person{name:“John”}) on create set a.age=20 //创建节点,先检测是否存在

      // 给节点a,b建立关系,如果a,b已经存在,就无需新建。

      MATCH (a:Person{name:“John”}), 
      (b:Person{name:“Ana”}) MERGE (a)-[:KNOWS]->(b)

    这几个只是最基本的操作,在复杂查询中,会用到诸如WITH, UNWIND等命令。这里不再详细描述。

    注意事项

    • 节点名称与节点Label的定义容易混乱。比如CREATE (n:Person)创建了一个属于Person的节点n。这里的n仅仅属于一个变量名,跟节点本身没有关系,命令执行结束,n的生命周期也就结束了,而Person则是节点本身的Label,会一直存在
    • 索引一定要建立(建立在某类的节点上当中),例如:CREATE INDEX ON :Person(id)

    快捷键

    关于Neo4j浏览器的初次使用有几个快捷键:

    • 默认单行输入,按回车执行命令
    • 输入一行命令之后,SHIFT + ENTER进入多行输入状态(也就是之后不用在多次按住shift+enter)
    • 在多行输入时,CTRL + ENTER执行命令
    • **ESC可以放大输入框至屏幕大小,复杂查询的时候,很方便**。

    内存配置

    关于内存配置的几个参数内存配置:

    • dbms.memory.heap.initial_size
    • dbms.memory.heap.max_size
    • dbms.memory.pagecache.size pagecache(页面缓存)
    • 可以使用neo4j-admin memrec来根据当前数据库数据,查看推荐的内存配置(memory recommend) 分别取前三位
    bin/neo4j-admin memrec --database=graph.db

    file:///

    就是用file:///加上对应文件的地址,打开对应的本地电脑(或者你所连接到的电脑的 ->估计指的是像windows中映射出来其他网络邻居中某个计算机为某个网盘的情况)中对应的文件。

    用file:///+文件的地址,其实就等价于文件的地址,

    即:

    file:///C:/Users/CLi/AppData/Local/Temp/WindowsLiveWriter1627300719/supfiles52F410/wangdan-se-436963[2].jpg

    其实就等价于;

    C:/Users/CLi/AppData/Local/Temp/WindowsLiveWriter1627300719/supfiles52F410/wangdan-se-436963[2].jpg

    使得(此处Html源码中所允许的地址,对应的WLW程序)可以访问对应的文件而已。

    neo4j load csv导入问题

    导入node时一般用create语句,导入关系时一般用merge语句,防止重复导入
    WITH HEADERS表明csv文件的第一行是属性名。

    neo4j的节点与标签关系:

    MERGE (<node-name>:<label-name>
    {
       <Property1-name>:<Pro<rty1-Value>
       .....
       <Propertyn-name>:<Propertyn-Value>
    })

    节点模式的构成:(Variable:Lable1:Lable2{Key1:Value1,Key2,Value2}),实际上,每个节点都有一个整数ID,在创建新的节点时,Neo4j自动为节点设置ID值,在整个数据库中,节点的ID值是递增的和唯一的。

    导入数据

    这一部分主要记录下如何将图数据从文件中导入库,常见的格式为CSV和JSON格式。

    导入CSV 格式数据

    Neo4j内置了命令来导入CSV数据:使用方法也很简单。假设CSV格式如下:

    "Id","Name","Year"
    "1","ABBA","1992"
    "2","Roxette","1986"
    "3","Europe","1979"
    "4","The Cardigans","1992"

    直接使用如下命令导入并直接引用headers来表示属性并创建节点:

    #WITH HEADERS 表示的是使用csv文件当中第一行的属性名,为之后的key:value映射做准备.(很重要)
    LOAD CSV WITH HEADERS FROM 'FILE:/artists.csv' AS line
    #可以没有节点名,直接:标签名
    CREATE (:Artist { name: line.Name, year: toInteger(line.Year)})

    注意事项:

    • 分隔符默认是,, 可以用FIELDTERMINATOR自定义分隔符:LOAD CSV WITH HEADERS FROM ‘FILE:/artists.csv’ AS line FIELDTERMINATOR “;”
    • 文件位置: 可以直接使用URL地址作为文件位置,如果是本地文件的话,直接使用“FILE:”表明,文件的位置是相对位置,在配置文件neo4j.conf中的dbms.directories.import参数可以指定,默认是neo4j安装目录下的import文件夹,将CSV文件放到该目录下即可。
    • 对于大规模数据,如果一次性导入可能会超内存,此时可以用PERIODIC COMMIT来分批提交导入数据,默认是1000行提交一次,具体如下:
    #PERIODIC:代表的是周期性的,commit:提交
    USING PERIODIC COMMIT 500
    LOAD CSV WITH HEADERS FROM...
    ....
    • 文本内容存在"的字段需要特殊处理

    一般使用:

    field terminated by ','
    optionally enclosed by '"'
    lines terminated by '
    '

    导入JSON格式数据

    图数据里面更常见的则是JSON数据, 假设数据格式如下:

    [
        {
        "id":1, "friends":[2,3], "name": "Bob", "age": 27,
        "book":[{"name":"book1", "year":2000}, {"name":"book3", "year":1990}]
        },
        {
        "id":2, "friends":[1], "name": "Alice", "age": 29,
        "book":[{"name":"book1", "year":2000}, {"name":"book2", "year":1999}]
        },
        {
        "id":3, "friends":[2], "name": "John", "age": 20,
        "book":[{"name":"book3", "year":1990}]
        }
    ]

    ​ 列表中每一个map都代表一个User, 其属性有id,name,age; 同时friends字段表示朋友关系,book字段表示读过某本书。 现在我们需要创建 Person 和 Book两类节点,同时Person和Book 之间有READ关系。

    APOC

    实际上就是一个用户过程存储库300+函数)

    a package of component :组件包

    变为

    awesome procedure on cypher:超级棒的存储过程
    Neo4j 并没有内置直接导入Json的函数,不过在Neo3.3版本之后,推出了一个函数存储包APOC,里面包含了非常丰富的函数和存储过程,如各种图计算算法,是Cypher的有力补充,其中就包含了从Json中导入数据。安装APOC很简单,只需要三步:

    • github中下载与Neo4j对应版本的APOCjar包
    • 将jar包拷贝到neo4j安装目录的plugins目录下
    • 在配置文件neo4j.conf中加入一行允许APOC导入文件:apoc.import.file.enabled=true
    • 重启Neo4j即可

    在Neo4j浏览器中,输入return apoc.version()即可查看版本号

    这里写图片描述

    此外我们可以看到apoc支持导入非常多格式的数据:

    这里写图片描述

    导入方式很简单,我们要创建两类节点,首先创建索引,方便后续导入。

    CREATE INDEX ON :Person(id)
    #不能一起创建索引,需要分开分步执行.
    CREATE INDEX ON :Book(name)

    否则会报错:

    Neo.ClientError.Statement.SyntaxError: Invalid input 'C': expected whitespace, comment, ';' or end of input (line 2, column 1 (offset: 28))
    "CREATE INDEX ON :Book(name)"

    这里写图片描述

    导入代码如下:

    // YIELD关键字表示每次导入json数据中的一组数据,即`[...]`中的每一个`{}`, 这里的person.json是系统绝对路径
    CALL apoc.load.json("file:///D:/neo4j-community-3.4.0/import/person.json") YIELD value as person    //这个最好是绝对路径,否则会报错.(重点注意)
    // 需要对book属性进行列表展开,后续建立Person和Book关系的时候,需要用。
    UNWIND person.book as book
    // 创建Person节点
    MERGE (p:Person{id:person.id})
    SET p.name=person.name, p.age=person.age, p.friends=person.friends
    //创建book节点
    MERGE (b:Book{name:book.name})
    SET b.year=book.year
    //建立person->book关系
    MERGE (p)-[:READ]->(b)

    然后再根据已有的friends导入Friend关系:

    //对每一个 person遍历
    MATCH (p:Person)
    // 对p的friends进行列表展开,
    UNWIND p.friends as f
    // 根据id搜索Person节点
    MATCH (q:Person{id:f})
    // 建立关系
    MERGE (p)-[:Friend]-(q)

    执行完成之后,可视化看一下 ,:

    这里写图片描述

    neo4j浏览器界面说明

    • 左侧(看上图就可以)是数据库的基本信息:包括节点标签,连接类型,*代表全部情况(各个类型的全部情况),属性,当前连接者,neoj数据库版本信息:

    • 第一行:(*)6:代表节点的总个数;person(3):代表person类节点的个数是3,

    • 第二行:(*)8代表连接数的总个数,Friend(3)是friend连接类型的边数有三个,后面以此类推

    这里写图片描述

    • 上图左侧五角星那项是专门用来 保存一些基本和自定义的脚本代码–cypher语句(在右侧左上角点击收藏之后刷新就会看到),便于加快速度,可以分类,添加的话可以拖拽相关类型文件添加.

    • 类似书本那项则是关于neo4j的说明文档,cypher语句的技术手册.

    • 红云朵那项则是用来云同步的(可选项,)可以清除当前登录信息.clear all data

    • 左侧齿轮状选项则是用来设置neo4j的浏览器界面的(有主题,和显示结果的个数设置)
    • 左侧最下角的是关于neo4j的版本信息

    ​ 到这里导入基本完成了,不过还有一点问题,暂时没有解决,使用UNWIND person.book as book的时候,如果某个节点没有book这个一个属性,那么后续代码将不再执行,即该Person节点不会创建。但是如果将UNWIND放到创建Person之后,建立的READ关系会有问题,还在查找原因。

    参考资源

  • 相关阅读:
    第二十篇 sys模块
    第十九章 Python os模块,pathlib 判断文件是目录还是文件
    第三篇 Postman之 Tests(后置处理器,断言)
    第十八篇 模块与包--time&random模块&模块导入import(os.path.dirname(os.path.abspath(__file__)))
    Sublime text3最全快捷键清单
    第十七篇 Python函数之闭包与装饰器
    第二篇 Postman的高阶使用之配置全局变量及局部变量的调用及设置方法(手动方法)
    第六篇 常用请求协议之post put patch 总结
    第十六篇 Python之迭代器与生成器
    PCL—低层次视觉—关键点检测(Harris)
  • 原文地址:https://www.cnblogs.com/jpfss/p/11589463.html
Copyright © 2020-2023  润新知