• [ZJOI2006]物流运输


    [ZJOI2006]物流运输

    题目

    物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本尽可能地小。

    INPUT

    第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一条从码头A到码头B的运输路线。

    OUTPUT

    包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。

    SAMPLE

    INPUT

    5 5 10 8

    1 2 1

    1 3 3

    1 4 2

    2 3 2

    2 4 4

    3 4 1

    3 5 2

    4 5 2

    4

    2 2 3

    3 1 1

    3 3 3

    4 4 5

    OUTPUT

    32

    //前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32

    解题报告

    神$DP$= =

    首先我们观察,码头有天数的限制,所以显然不能瞎XX直接求最短路(这不是废话吗),所以我们考虑$DP$

    我们可以求出在每一段区间内,哪些码头可以用,哪些码头不能用,那么,我们自然可以处理出,每一段区间内,从起点到终点的最小花费(即最短路)。

    具体方法:

    枚举每一段时间区间,将在这段区间中关闭的码头砍掉,剩下的码头跑单源最短路($SPFA$就可以了)

    然后,我们得出了一个数组$cost[i][j]$表示从第$i$天到第$j$天,从起点到终点的最短路,接着就可以写转移方程了。

    设$f[i]$表示到第$i$天所需的最小花费:

    $$f[i]=min{f[j]+cost[j+1][i]*(i-j)+k}$$

    原因很简单,当前状态一定是由上一状态转移而来,我们假设到第$j$天换了航线,并沿此航线航行到第$j$天,这一段所需的花费是$cost[j+1][i]*(i-j)$,换航线所需的花费是$k$,我们只要枚举$i$之前的$j$,求最小值即可转移过来了

    需要注意的是,从第$0$天转移过来时,默认换了一次航线,实际上并没有换,所以最后结果要减去一个$k$,即:

    $$ans=f[n]-k$$

      1 #include<iostream>
      2 #include<cstring>
      3 #include<cstdio>
      4 #include<queue>
      5 using namespace std;
      6 inline int read(){
      7     int sum(0);
      8     char ch(getchar());
      9     for(;ch<'0'||ch>'9';ch=getchar());
     10     for(;ch>='0'&&ch<='9';sum=sum*10+(ch^48),ch=getchar());
     11     return sum;
     12 }
     13 struct edge{
     14     int e,w;
     15     edge *n;
     16     edge():e(0),w(0),n(NULL){}
     17 }a[405],eve[405],*pre[25],*nxt[25];
     18 int tot,ttt;
     19 inline void insert(int s,int e,int w){
     20     a[++tot].e=e;
     21     a[tot].w=w;
     22     a[tot].n=pre[s];
     23     pre[s]=&a[tot];
     24 }
     25 inline void add(int s,int e,int w){
     26     eve[++ttt].e=e;
     27     eve[ttt].w=w;
     28     eve[ttt].n=nxt[s];
     29     nxt[s]=&eve[ttt];
     30 }
     31 int n,m,k,e,d;
     32 bool dat[25][105];
     33 bool can[25];
     34 int cost[105][105],dis[25];
     35 bool vis[25];
     36 inline void spfa(){
     37     memset(dis,0x3f,sizeof(dis));
     38     memset(vis,0,sizeof(vis));
     39     dis[1]=0,vis[1]=1;
     40     queue<int>q;
     41     q.push(1);
     42     while(!q.empty()){
     43         int k(q.front());
     44         vis[k]=0;
     45         q.pop();
     46         for(edge *i=nxt[k];i;i=i->n){
     47             int e(i->e);
     48             if(dis[e]>dis[k]+i->w){
     49                 dis[e]=dis[k]+i->w;
     50                 if(!vis[e]){
     51                     vis[e]=1;
     52                     q.push(e);
     53                 }
     54             }
     55         }
     56     }
     57 }
     58 int f[105];
     59 inline int gg(){
     60     freopen("bzoj_1003.in","r",stdin);
     61     freopen("bzoj_1003.out","w",stdout);
     62     memset(pre,NULL,sizeof(pre));
     63     n=read(),m=read(),k=read(),e=read();
     64     for(int i=1;i<=e;++i){
     65         int x(read()),y(read()),z(read());
     66         insert(x,y,z),insert(y,x,z);
     67     }
     68     d=read();
     69     for(int i=1;i<=d;++i){
     70         int x(read()),y(read()),z(read());
     71         for(int j=y;j<=z;++j)
     72             dat[x][j]=1;
     73     }
     74     memset(f,0x3f,sizeof(f));
     75     memset(cost,0x3f,sizeof(cost));
     76     int inf(f[1]);
     77     for(int i=1;i<=n;++i){
     78         for(int j=i;j<=n;++j){
     79             memset(can,1,sizeof(can));
     80             memset(nxt,NULL,sizeof(nxt));
     81             ttt=0;
     82             for(int o=1;o<=m;++o){
     83                 for(int l=i;l<=j;++l)
     84                     if(dat[o][l]){
     85                         can[o]=0;
     86                         break;
     87                     }
     88             }
     89             for(int o=1;o<=m;++o){
     90                 if(!can[o])
     91                     continue;
     92                 for(edge *i=pre[o];i;i=i->n){
     93                     int e(i->e);
     94                     if(can[e])
     95                         add(o,e,i->w);
     96                 }
     97             }
     98             spfa();
     99             cost[i][j]=dis[m];
    100         }
    101     }
    102     f[0]=0;
    103     for(int i=1;i<=n;++i)
    104         for(int j=0;j<i;++j)
    105             if(f[j]!=inf&&cost[j+1][i]!=inf)
    106                 f[i]=min(f[i],f[j]+cost[j+1][i]*(i-j)+k);
    107     printf("%d",f[n]-k);
    108     return 0;
    109 }
    110 int K(gg());
    111 int main(){;}
    View Code
  • 相关阅读:
    Django ORM多表操作
    Django 单表查询作业-笔记
    python 2 编码问题
    HTML-Bootstrap下载和基本使用
    Django ORM单表操作之增删改查
    Django ORM简介和单表创建的设置和过程
    Django --总结 之URL路由控制 视图相应,视图请求,和模板语法
    Django URL控制器
    JAVA编程
    UMI 的原理分析带有 UMI 的数据
  • 原文地址:https://www.cnblogs.com/hzoi-mafia/p/7357822.html
Copyright © 2020-2023  润新知