• HDU 2586 倍增法求lca


    How far away ?

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 14685    Accepted Submission(s): 5554


    Problem Description
    There are n houses in the village and some bidirectional roads connecting them. Every day peole always like to ask like this "How far is it if I want to go from house A to house B"? Usually it hard to answer. But luckily int this village the answer is always unique, since the roads are built in the way that there is a unique simple path("simple" means you can't visit a place twice) between every two houses. Yout task is to answer all these curious people.
     
    Input
    First line is a single integer T(T<=10), indicating the number of test cases.
      For each test case,in the first line there are two numbers n(2<=n<=40000) and m (1<=m<=200),the number of houses and the number of queries. The following n-1 lines each consisting three numbers i,j,k, separated bu a single space, meaning that there is a road connecting house i and house j,with length k(0<k<=40000).The houses are labeled from 1 to n.
      Next m lines each has distinct integers i and j, you areato answer the distance between house i and house j.
     
    Output
    For each test case,output m lines. Each line represents the answer of the query. Output a bland line after each test case.
     
    Sample Input
    2 3 2 1 2 10 3 1 15 1 2 2 3 2 2 1 2 100 1 2 2 1
     
    Sample Output
    10 25 100 100
     
    Source
     题意:给你一颗带权树 求任意两个结点间的最短距离
     题解:dis存结点到根的距离+lca   dis=dis[a]+dis[b]-2*dis[lca(a,b)]; 倍增法求lca
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstdlib>
      4 #include <cstring>
      5 #include <algorithm>
      6 #include <stack>
      7 #include <queue>
      8 #include <cmath>
      9 #include <map>
     10 #define ll  __int64
     11 #define mod 1000000007
     12 #define dazhi 2147483647
     13 #define bug() printf("!!!!!!!")
     14 using namespace  std;
     15 #define maxn 40010
     16 #define M 22
     17 struct node
     18 {
     19     int pre;
     20     int to;
     21     int w;
     22 }N[maxn*2];
     23 int pre[maxn];
     24 int deep[maxn],nedge=0;
     25 int dis[maxn];
     26 int rudu[maxn];
     27 int fa[maxn][M];
     28 int t;
     29 int f1,t1,w1;
     30 int l,r;
     31 int n,m;
     32 void add(int from ,int to,int ww)
     33 {
     34     nedge++;
     35     N[nedge].to=to;
     36     N[nedge].pre=pre[from];
     37     N[nedge].w=ww;
     38     pre[from]=nedge;
     39 }
     40 void dfs(int u)
     41 {
     42     for(int i=pre[u];i;i=N[i].pre)
     43     {
     44         int v=N[i].to;
     45         if(deep[v]==0)
     46         {
     47             dis[v]=dis[u]+N[i].w;
     48             deep[v]=deep[u]+1;
     49             fa[v][0]=u;
     50             dfs(v);
     51         }
     52     }
     53 }
     54 void st(int n)
     55 {
     56     for(int j=1;j<M;j++)
     57         for(int i=1;i<=n;i++)
     58          fa[i][j]=fa[fa[i][j-1]][j-1];
     59 }
     60 int lca(int u,int v)
     61 {
     62     if(deep[u]<deep[v]) swap(u,v);
     63     int d=deep[u]-deep[v];
     64     int i;
     65     for(i=0;i<M;i++)
     66     {
     67         if((1<<i)&d)
     68         {
     69             u=fa[u][i];
     70         }
     71     }
     72     if(u==v) return u;
     73     for(i=M-1;i>=0;i--)
     74     {
     75         if(fa[u][i]!=fa[v][i])
     76         {
     77             u=fa[u][i];
     78             v=fa[v][i];
     79         }
     80     }
     81     u=fa[u][0];
     82     return u;
     83 }
     84 void init()
     85 {
     86    memset(rudu,0,sizeof(rudu));
     87    memset(dis,0,sizeof(dis));
     88    memset(deep,0,sizeof(deep));
     89    memset(fa,0,sizeof(fa));
     90    memset(N,0,sizeof(N));
     91    memset(pre,0,sizeof(pre));
     92    nedge=0;
     93 }
     94 int main()
     95 {
     96     while(scanf("%d",&t)!=EOF)
     97     {
     98         for(int i=1;i<=t;i++)
     99         {
    100             init();
    101             scanf("%d %d",&n,&m);
    102             for(int j=1;j<n;j++)
    103             {
    104                scanf("%d %d %d",&f1,&t1,&w1);
    105                add(f1,t1,w1);
    106                rudu[t1]++;
    107             }
    108             for(int j=1;j<=n;j++)
    109             {
    110                 if(rudu[j]==0)
    111                 {
    112                     deep[j]=1;
    113                     dis[j]=0;
    114                     dfs(j);
    115                     break;
    116                 }
    117             }
    118             st(n);
    119             for(int j=1;j<=m;j++)
    120             {
    121                int aa,bb;
    122                scanf("%d %d",&aa,&bb);
    123                printf("%d
    ",dis[aa]+dis[bb]-2*dis[lca(aa,bb)]);
    124             }
    125         }
    126     }
    127     return 0;
    128 }
  • 相关阅读:
    游记&退役记
    Nothing to say
    学习知识点的比较好的blog
    计划做题列表
    后缀自动机小专题
    复数
    FFT学习
    P2900 [USACO08MAR]土地征用Land Acquisition
    # 数位DP入坑
    Hdu 4035 Maze(概率DP)
  • 原文地址:https://www.cnblogs.com/hsd-/p/6550891.html
Copyright © 2020-2023  润新知