Description
Bob有一棵n个点的有根树,其中1号点是根节点。Bob在每个点上涂了颜色,并且每个点上的颜色不同。定义一条路
径的权值是:这条路径上的点(包括起点和终点)共有多少种不同的颜色。Bob可能会进行这几种操作:
1 x:
把点x到根节点的路径上所有的点染上一种没有用过的新颜色。
2 x y:
求x到y的路径的权值。
3 x y:
在以x为根的子树中选择一个点,使得这个点到根节点的路径权值最大,求最大权值。
Bob一共会进行m次操作
Input
第一行两个数n,m。
接下来n-1行,每行两个数a,b,表示a与b之间有一条边。
接下来m行,表示操作,格式见题目描述
1<=n,m<=100000
Output
每当出现2,3操作,输出一行。
如果是2操作,输出一个数表示路径的权值
如果是3操作,输出一个数表示权值的最大值
Sample Input
5 6
1 2
2 3
3 4
3 5
2 4 5
3 3
1 4
2 4 5
1 5
2 4 5
Sample Output
3
4
2
2
Solution
这真的是一道数据结构神题
一步一步来,我们先看如何求答案
对于第2个询问,如果我们知道每个节点到根路径上的答案,那么就变成了经典的树上差分,(ans(u)+ans(v)-2*ans(lca_{u,v})+1)
这里解释一下+1,这东西很妙啊。看修改操作,每次都是把一个点到根路径上的颜色都改成一种新的颜色,所以不可能存在 (u) 到 (lca) ((lca) 除外)的路径上与 (v) 到 (lca) ((lca) 除外)的路径上有相同的颜色,路径上也不可能出现颜色断层现象。所以只有两种情况:一是 (lca) 上的颜色不与任何它到 (u),(v) 路径上的颜色相同,这样减去后,因为 (lca) 上是一种新的颜色,所以要加1;二是 (lca) 上的颜色与它到 (u),(v) 的某一条路径上连着的一段颜色相同,这样减去之后这连着一段颜色相同的贡献多减了一次,所以还是要加1
关键就是这个修改操作,很精髓,所以这样差分是正确的(可以自己手动画画)
然后对于第3个询问,既然我们维护的就是 (ans(u)) 和 (ans(v)) ,那么就再找到它的 (lca) ,直接三次询问就出答案了
再看第一个修改操作,这不很像LCT的access吗,那就用access维护
而对于 (ans(u)) 答案的维护,因为又要维护点,又要维护子树,那就树剖后的线段树吧
然后每次access的时候,如果断开了右儿子的链,那么右儿子与当前点的颜色就不一样了,所以要给右儿子所在的子树的答案加1;而新接的右子树因为从颜色不一样变成了颜色一样,所以要给新的右子树的答案减1
数据结构啊,数据结构。。
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=100000+10;
int n,m,e,to[MAXN<<1],nex[MAXN<<1],beg[MAXN],srt[MAXN],end[MAXN],hson[MAXN],cnt,size[MAXN],fa[MAXN],dep[MAXN],iit[MAXN],top[MAXN];
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
#define Mid ((l+r)>>1)
#define lson rt<<1,l,Mid
#define rson rt<<1|1,Mid+1,r
struct SEG{
int Mx[MAXN<<2],Ad[MAXN<<2];
inline void PushUp(int rt)
{
Mx[rt]=max(Mx[rt<<1],Mx[rt<<1|1]);
}
inline void PushDown(int rt)
{
Mx[rt<<1]+=Ad[rt];Mx[rt<<1|1]+=Ad[rt];
Ad[rt<<1]+=Ad[rt];Ad[rt<<1|1]+=Ad[rt];
Ad[rt]=0;
}
inline void Build(int rt,int l,int r)
{
if(l==r)Mx[rt]=iit[l];
else
{
Build(lson);Build(rson);
PushUp(rt);
}
}
inline void Update(int rt,int l,int r,int L,int R,int k)
{
if(L<=l&&r<=R)Mx[rt]+=k,Ad[rt]+=k;
else
{
PushDown(rt);
if(L<=Mid)Update(lson,L,R,k);
if(R>Mid)Update(rson,L,R,k);
PushUp(rt);
}
}
inline int QuerySm(int rt,int l,int r,int pos)
{
if(l==r&&r==pos)return Mx[rt];
else
{
PushDown(rt);
if(pos<=Mid)return QuerySm(lson,pos);
else return QuerySm(rson,pos);
}
}
inline int QueryMx(int rt,int l,int r,int L,int R)
{
if(L<=l&&r<=R)return Mx[rt];
else
{
PushDown(rt);
int res=0;
if(L<=Mid)chkmax(res,QueryMx(lson,L,R));
if(R>Mid)chkmax(res,QueryMx(rson,L,R));
return res;
}
}
};
SEG T1;
#undef Mid
#undef lson
#undef rson
#define lc(x) ch[(x)][0]
#define rc(x) ch[(x)][1]
struct LCT{
int ch[MAXN][2],fa[MAXN];
inline bool nroot(int x)
{
return lc(fa[x])==x||rc(fa[x])==x;
}
inline void rotate(int x)
{
int f=fa[x],p=fa[f],c=(rc(f)==x);
if(nroot(f))ch[p][rc(p)==f]=x;
fa[ch[f][c]=ch[x][c^1]]=f;
fa[ch[x][c^1]=f]=x;
fa[x]=p;
}
inline void splay(int x)
{
for(register int y=fa[x];nroot(x);rotate(x),y=fa[x])
if(nroot(y))rotate((lc(y)==x)==(lc(fa[y])==y)?y:x);
}
inline int findroot(int x)
{
while(lc(x))x=lc(x);
return x;
}
inline void access(int x)
{
for(register int y=0,rt;x;x=fa[y=x])
{
splay(x);
if(rc(x))rt=findroot(rc(x)),T1.Update(1,1,n,srt[rt],end[rt],1);
rc(x)=y;
if(rc(x))rt=findroot(rc(x)),T1.Update(1,1,n,srt[rt],end[rt],-1);
}
}
};
LCT T2;
#undef lc
#undef rc
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c=' ')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!=' ')putchar(c);
}
inline void insert(int x,int y)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
}
inline void dfs1(int x,int f,int d)
{
int ch=0;
fa[x]=f;
size[x]=1;dep[x]=d;
for(register int i=beg[x];i;i=nex[i])
if(to[i]==f)continue;
else
{
dfs1(to[i],x,d+1);
size[x]+=size[to[i]];
if(size[to[i]]>ch)hson[x]=to[i],ch=size[to[i]];
}
}
inline void dfs2(int x,int tp)
{
srt[x]=++cnt;
iit[cnt]=dep[x];
top[x]=tp;
if(hson[x])dfs2(hson[x],tp);
for(register int i=beg[x];i;i=nex[i])
if(to[i]==fa[x]||to[i]==hson[x])continue;
else dfs2(to[i],to[i]);
end[x]=cnt;
}
inline int LCA(int u,int v)
{
while(top[u]!=top[v])
{
if(dep[top[u]]<dep[top[v]])std::swap(u,v);
u=fa[top[u]];
}
return dep[u]<dep[v]?u:v;
}
int main()
{
read(n);read(m);
for(register int i=1;i<n;++i)
{
int u,v;
read(u);read(v);
insert(u,v);insert(v,u);
}
dfs1(1,0,1);dfs2(1,1);
T1.Build(1,1,n);
for(register int i=1;i<=n;++i)T2.fa[i]=fa[i];
while(m--)
{
int opt;
read(opt);
if(opt==1)
{
int x;
read(x);
T2.access(x);
}
if(opt==2)
{
int x,y,lca;
read(x);read(y);lca=LCA(x,y);
write(T1.QuerySm(1,1,n,srt[x])+T1.QuerySm(1,1,n,srt[y])-2*T1.QuerySm(1,1,n,srt[lca])+1,'
');
}
if(opt==3)
{
int x;
read(x);
write(T1.QueryMx(1,1,n,srt[x],end[x]),'
');
}
}
return 0;
}